The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 195
Back to Result List

Weak Solutions to Mathematical Models of the Interaction between Fluids, Solids and Electromagnetic Fields

Schwache Lösungen für mathematische Modelle der Wechselwirkung zwischen Flüssigkeiten, Festkörpern und elektromagnetischen Feldern

Please always quote using this URN: urn:nbn:de:bvb:20-opus-349205
  • We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations,We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods. The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.show moreshow less
  • Wir analysieren die mathematischen Modelle von zwei Arten physikalischer Phänomene. Die erste Art von Phänomenen, die wir betrachten, ist die Wechselwirkung zwischen einem oder mehreren isolierenden starren Körpern und einem elektrisch leitenden Fluid, das die Körper umgibt, sowie den elektromagnetischen Feldern in beiden Materialien. Wir untersuchen sowohl den Fall inkompressibler als auch kompressibler Fluide. In beiden Fällen liefert unser Hauptresultat die Existenz von schwachen Lösungen für das zugehörige System partiellerWir analysieren die mathematischen Modelle von zwei Arten physikalischer Phänomene. Die erste Art von Phänomenen, die wir betrachten, ist die Wechselwirkung zwischen einem oder mehreren isolierenden starren Körpern und einem elektrisch leitenden Fluid, das die Körper umgibt, sowie den elektromagnetischen Feldern in beiden Materialien. Wir untersuchen sowohl den Fall inkompressibler als auch kompressibler Fluide. In beiden Fällen liefert unser Hauptresultat die Existenz von schwachen Lösungen für das zugehörige System partieller Differentialgleichungen. Die Beweise dieser Resultate beruhen auf hybriden diskret-kontinuierlichen Approximationsmethoden: Teile der Systeme werden in der Zeit diskretisiert, um das Problem der lösungsabhängigen Testfunktionen in der Induktionsgleichung zu bewältigen. Die verbleibenden Gleichungen werden als kontinuierliche Gleichungen auf den kleinen Intervallen zwischen aufeinanderfolgenden diskreten Zeitpunkten behandelt, sodass wir Techniken anwenden können, die sich nicht auf das diskretisierte System übertragen lassen. Darüber hinaus wird das Problem der lösungsabhängigen Testfunktionen in der Impulsgleichung durch die Verwendung klassischer Penalisierungsmethoden gelöst. Die zweite Art von Phänomenen, die wir betrachten, ist die Entwicklung eines magnetoelastischen Materials. Auch hier beweist unser Hauptresultat die Existenz schwacher Lösungen für das zugehörige System partieller Differentialgleichungen. Der Beweis basiert auf der Methode von De Giorgi, bei der das System in der Zeit diskretisiert und in jedem diskreten Zeitpunkt ein Minimierungsproblem gelöst wird, dessen zugehörige Euler-Lagrange-Gleichungen eine geeignete Approximation an die ursprüngliche Bewegungsgleichung und mikromagnetische Gleichung darstellen. Die Konstruktion eines solchen Minimierungsproblems wird durch die Erkenntnis ermöglicht, dass diese beiden Gleichungen bereits im kontinuierlichen System mithilfe derselben Energie- und Dissipationspotenziale ausgedrückt werden können. Das Funktional für das diskrete Minimierungsproblem kann dann auf Grundlage dieser Potenziale konstruiert werden.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Jan ScherzORCiD
URN:urn:nbn:de:bvb:20-opus-349205
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Referee:Prof. Dr. Anja Schlömerkemper, Dr. Barbora Benešová
Date of final exam:2024/01/23
Language:English
Year of Completion:2024
DOI:https://doi.org/10.25972/OPUS-34920
Sonstige beteiligte Institutionen:Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University in Prague
Sonstige beteiligte Institutionen:Mathematical Institute, Czech Academy of Sciences
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 515 Analysis
GND Keyword:Fluid-Struktur-WechselwirkungGND; MagnetoelastizitätGND; MagnetohydrodynamikGND; Navier-Stokes-GleichungGND; Zeitdiskrete ApproximationGND
Tag:Fluid-structure interaction; Magnetoelasticity; Magnetohydrodynamics; Minimizing movements; Navier-Stokes equations; Rothe method
MSC-Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Qxx Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] / 35Q30 Navier-Stokes equations [See also 76D05, 76D07, 76N10]
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Qxx Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] / 35Q61 Maxwell equations
49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX]
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Fxx Coupling of solid mechanics with other effects / 74F15 Electromagnetic effects
76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX) / 76Nxx Compressible fluids and gas dynamics, general / 76N10 Existence, uniqueness, and regularity theory [See also 35L60, 35L65, 35Q30]
76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX) / 76Wxx Magnetohydrodynamics and electrohydrodynamics / 76W05 Magnetohydrodynamics and electrohydrodynamics
Release Date:2024/03/11
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International