• Treffer 77 von 811
Zurück zur Trefferliste

Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-129829
  • In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it is small, very large system sizes at high precisions are required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetrybreaking field and then measure the induced local order parameter infinitely far from the pinning center. The method is tested here atIn numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it is small, very large system sizes at high precisions are required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetrybreaking field and then measure the induced local order parameter infinitely far from the pinning center. The method is tested here at length for the Hubbard model on honeycomb lattice, within the realm of the projective auxiliary-field quantum Monte Carlo algorithm. With our enhanced resolution, we find a direct and continuous quantum phase transition between the semimetallic and the insulating antiferromagnetic states with increase of the interaction. The single-particle gap, measured in units of Hubbard U, tracks the staggered magnetization. An excellent data collapse is obtained by finite-size scaling, with the values of the critical exponents in accord with the Gross-Neveu universality class of the transition.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Fakher F. Assaad, Igor F. Herbut
URN:urn:nbn:de:bvb:20-opus-129829
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Physical Review X
Erscheinungsjahr:2013
Band / Jahrgang:3
Heft / Ausgabe:031010
Originalveröffentlichung / Quelle:Physical Review X 3, 031010 (2013). DOI: 10.1103/PhysRevX.3.031010
DOI:https://doi.org/10.1103/PhysRevX.3.031010
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):computational physics; mesoscopics; strongly correlated materials
Datum der Freischaltung:01.07.2016
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung