• Treffer 8 von 12
Zurück zur Trefferliste

Spin‐ and Voltage‐Dependent Emission from Intra‐ and Intermolecular TADF OLEDs

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-224434
  • Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near‐orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′‐(9H,9′H‐[3,3′‐bicarbazole]‐9,9′‐diyl)bis(3‐(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) isOrganic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near‐orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′‐(9H,9′H‐[3,3′‐bicarbazole]‐9,9′‐diyl)bis(3‐(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′‐tris[phenyl(m‐tolyl)amino]triphenylamine (m‐MTDATA). Orange emitting exciplex‐based OLEDs additionally generate a sky‐blue emission from the intramolecular emitter with an intensity that can be voltage‐controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin‐dependent triplet to singlet up‐conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra‐ and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin‐dependent emission from intra‐ and intermolecular TADF OLEDs.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Nikolai Bunzmann, Benjamin Krugmann, Sebastian Weissenseel, Liudmila Kudriashova, Khrystyna Ivaniuk, Pavlo Stakhira, Vladyslav Cherpak, Marian Chapran, Gintare Grybauskaite‐Kaminskiene, Juozas Vidas Grazulevicius, Vladimir Dyakonov, Andreas Sperlich
URN:urn:nbn:de:bvb:20-opus-224434
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Electronic Materials
Erscheinungsjahr:2021
Band / Jahrgang:7
Heft / Ausgabe:3
Aufsatznummer:2000702
Originalveröffentlichung / Quelle:Advanced Electronic Materials 2021, 7(3):2000702. DOI: 10.1002/aelm.202000702
DOI:https://doi.org/10.1002/aelm.202000702
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):color tuning; exciplexes; organic light emitting diodes; spin; triplets
Datum der Freischaltung:17.11.2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International