• Treffer 19 von 127
Zurück zur Trefferliste

Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-209467
  • Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-strandedAbsorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Matthias Wohlgemuth, Roland Mitric
URN:urn:nbn:de:bvb:20-opus-209467
Dokumentart:Preprint (Vorabdruck)
Institute der Universität:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Physical Chemistry Chemical Physics
Erscheinungsjahr:2020
Auflage:submitted version
Originalveröffentlichung / Quelle:Physical Chemistry Chemical Physics, 2020, 22, 16536-16551. https://doi.org/10.1039/D0CP02255A
DOI:https://doi.org/10.1039/D0CP02255A
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Freie Schlagwort(e):DNA; Photodynamics
Datum der Freischaltung:03.08.2020
EU-Projektnummer / Contract (GA) number:646737
OpenAIRE:OpenAIRE
Lizenz (Deutsch):License LogoDeutsches Urheberrecht