• search hit 1 of 1
Back to Result List

The Influence of Substrate Micro- and Nanotopographies on Essential Cell Functions

Der Einfluss von Substrat-Mikro- und Nanotopographien auf essentielle Zellfunktionen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-327796
  • The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study aims at investigating the interaction of living cells with microstructured, nanostructured and nanoporous material surfaces in order to identify distinct systematics in cell-material interplay. For this purpose, three different studies were carried outThe introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study aims at investigating the interaction of living cells with microstructured, nanostructured and nanoporous material surfaces in order to identify distinct systematics in cell-material interplay. For this purpose, three different studies were carried out and yielded individual effects on different cell functions. Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell's environment. The first part of this study presents systematically controlled assays to investigate the effects of spatial density and local geometry of micron scale topographic cues on amoeboid migration of Dictyostelium discoideum cells in quasi-3D pillar fields with systematic variation of inter-pillar distance and pillar lattice geometry. We can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. We further investigate amoeboid single-cell migration on intrinsically nano-structured, biodegradable silica fibers in comparison to chemically equivalent plain glass surfaces. Cell migration trajectories are classified into directed runs and quasi-random migration by a local mean squared displacement (LMSD) analysis. We find that directed movement on silica fibers is enhanced in a significant manner by the fibers' nanoscale surface-patterns. Further, cell adhesion on the silica fibers is a microtubule-mediated process. Cells lacking microtubules detach from the fibers, but adhere well to glass surfaces. Knock-out mutants of myosin II migrating on the fibers are as active as cells with active myosin II, while the migration of the knock-out mutants is hindered on plain glass. We investigate the influence of the intrinsically nano-patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 nm and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend towards mean pore sizes > 80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSC on samples with 17 nm pore size display increased expression of COL10, COL2A1 and SOX9, especially during the first two weeks of culture. In upside down culture, SK MEL-28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA MB 321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples. The studies presented in this work showed novel and distinct effects of micro- and nanoscale topographies on the behavior of various types of living cells. These examples display how versatile the potential for applications of bioactive materials could become in the next years and decades. And yet this variety of different alterations of cell functions due to topographic cues also shows the crucial part of this field of research: Carving out distinct, robust correlations of external cues and cell behavior is of utmost importance to derive definitive design implications that can lead to scientifically, clinically and commercially successful products.show moreshow less
  • Die Erforschung neuartiger bioaktiver Materialien zur Beeinflussung des Verhaltens lebender Zellen ist ein wichtiges Thema für die biomedizinische Forschung und das Tissue Engineering. Biomaterialien oder Oberflächenstrukturen, die spezifische Zellfunktionen fördern, können innovative neue Produkte in der Zellkultur und Diagnostik ermöglichen. Ziel dieser Studie ist es, die Interaktion von lebenden Zellen mit mikrostrukturierten, nanostrukturierten und nanoporösen Materialoberflächen zu untersuchen, um unterschiedliche Systematiken imDie Erforschung neuartiger bioaktiver Materialien zur Beeinflussung des Verhaltens lebender Zellen ist ein wichtiges Thema für die biomedizinische Forschung und das Tissue Engineering. Biomaterialien oder Oberflächenstrukturen, die spezifische Zellfunktionen fördern, können innovative neue Produkte in der Zellkultur und Diagnostik ermöglichen. Ziel dieser Studie ist es, die Interaktion von lebenden Zellen mit mikrostrukturierten, nanostrukturierten und nanoporösen Materialoberflächen zu untersuchen, um unterschiedliche Systematiken im Zusammenspiel von Zellen und Materialien zu identifizieren. Zu diesem Zweck wurden drei verschiedene Studien durchgeführt, die individuelle Effekte auf unterschiedliche Zellfunktionen ergaben. Im ersten Teil dieser Arbeit werden systematisch kontrollierte Assays aufgebaut, die die Auswirkungen der Dichte und Geometrie topografischer Stimuli im Mikrometerbereich auf die amöboide Migration von Dictyostelium discoideum-Zellen untersuchen - in Quasi-3D-Säulenfeldern mit systematischer Variation des Abstands zwischen den Säulen und der Gittergeometrie der Säulen. Wir konnten Motilitätsparameter extrahieren und damit die amöboiden Migrationsmechanismen in einem kontaktgesteuerten Motilitätsmodell mit zwei Zuständen beschreiben, das zwischen gerichteten und ungerichteten (zufälligen) Migrationsphasen unterscheidet. Es konnte gezeigt werden, dass gerichtete Bewegungen von Säule zu Säule vorzugsweise in Regionen mit hoher Säulendichte zu finden sind und Zellen in gerichteten Bewegungszuständen Säulen als attraktive topographische Stimuli wahrnehmen. Im Gegensatz dazu wird die Zellbewegung in ungerichteten Migrationsphasen durch eine hohe Säulendichte gehemmt, da Säulen als Hindernisse für die Zellbewegung wirken. In Säulenfelder mit Dichtegradienten führen diese Mechanismen zu einer topografischen Führung der Zellen, mit einer allgemeinen Tendenz zu einem Regime von Säulenabständen nahe dem Zelldurchmesser. In lokal anisotropen Säulenumgebungen wird die Zellmigration häufig durch konkurrierende Anziehungskräfte verschiedener Säulen in unmittelbarer Nähe und durch das Fehlen anderer potenzieller Stimuli in der Nähe der Zelle gedämpft. In Teil zwei der Arbeit wurde die amöboide Einzelzellmigration auf intrinsisch nanostrukturierten, biologisch abbaubaren Siliziumdioxidfasern im Vergleich zu chemisch äquivalenten glatten Glasoberflächen untersucht. Es konnte gezeigt werden, dass die gerichtete Bewegung auf Siliziumdioxid-Fasern durch die nanoskalige Oberflächenstruktur der Fasern deutlich verstärkt wird. Außerdem ist die Zelladhäsion auf den Siliziumdioxidfasern ein durch Mikrotubuli vermittelter Prozess - Zellen, denen Mikrotubuli fehlen, lösen sich von den Fasern ab, haften aber gut an den Glasoberflächen. Knock-out-Mutanten von Myosin II sind auf den Faseroberflächen genauso aktiv wie Zellen mit aktivem Myosin II, während die Migration der Knock-out-Mutanten auf normalem Glas behindert wird. Der dritte Teil der Arbeit beschäftigt sich mit dem Einfluss der intrinsisch nanostrukturierten Oberfläche von nanoporösen Glasmembranen auf das Verhalten von Säugetierzellen. Drei verschiedene Zelllinien und primäre humane mesenchymale Stammzellen (hMSCs) vermehren sich gut auf nanoporösen Glasmembranen mit mittleren Porengrößen zwischen 10 nm und 124 nm. Sowohl in Proliferations- als auch in mRNA-Expressionsversuchen zeigen L929-Fibroblasten einen deutlichen Trend zu mittleren Porengrößen > 80 nm. Bei primären hMSC wird auf allen nanoporösen Oberflächen eine ausgezeichnete Proliferation beobachtet. hMSC auf Proben mit 17 nm Porengröße zeigen eine erhöhte Expression von COL10, COL2A1 und SOX9, insbesondere während der ersten zwei Wochen der Kultur. In der Upside-Down-Kultur widerstehen SK MEL-28-Zellen auf nanoporösem Glas der Schwerkraft und vermehren sich im Gegensatz zu Zellen auf flachen Referenz-Oberflächen gut. Die Wirkung der Paclitaxel-Behandlung von MDA MB 321 Brustkrebszellen ist bereits nach 48 Stunden auf nanoporösen Membranen sichtbar und im Vergleich zu Referenzproben stark ausgeprägt. Die in dieser Arbeit vorgestellten Studien zeigen neuartige und sehr unterschiedliche Auswirkungen von mikro- und nanoskaligen Topographien auf das Verhalten verschiedener Arten von lebenden Zellen. Diese Beispiele zeigen, wie vielfältig das Anwendungspotenzial bioaktiver Materialien in den nächsten Jahren und Jahrzehnten sein könnte. Die Vielfalt der unterschiedlichen Veränderungen von Zellfunktionen durch topographische Einflüsse zeigt aber auch, wie essentiell Grundlagenforschung in diesem Bereich ist: Es ist von größter Wichtigkeit, eindeutige, robuste Zusammenhänge zwischen externen Stimuli und dem Verhalten von Zellen zu identifizieren, um wissenschaftlich, klinisch und kommerziell erfolgreiche Produkte zu entwickeln.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Martin EmmertORCiDGND
URN:urn:nbn:de:bvb:20-opus-327796
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Funktionsmaterialien und Biofabrikation
Referee:Prof. Dr. Gerhard Sextl, Prof. Dr. Doris Heinrich
Date of final exam:2023/05/05
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-32779
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Tag:biophysics; cell; cellmigration; migration; nanoporous; nanotopography
Release Date:2023/10/16
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand