• Treffer 3 von 7
Zurück zur Trefferliste

Adaptive Polarization Pulse Shaping and Modeling of Light-Matter Interactions with Neural Networks

Adaptive Polarisationspulsformung und Modellierung von Licht-Materie-Wechselwirkungen mit Neuronalen Netzwerken

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-25596
  • The technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump–probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near–IR polarization–shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization ofThe technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump–probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near–IR polarization–shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization of polarization–shaped laser pulses in the UV are introduced. Systematic scans of double–pulse sequences are introduced for the investigation and interpretation of control mechanisms. This concept is first introduced and illustrated for an optical demonstration experiment, and it is then applied for the analysis of the intrapulse dumping mechanism that is observed in the excitation of a large dye molecule in solution with ultrashort laser pulses. Shaped laser pulses are employed as a means for obtaining copious amounts of data on light–matter interactions. Neural networks are introduced as a novel tool for generating computer–based models for these interactions from the accumulated data. The viability of this approach is first tested for second harmonic generation (SHG) and molecular fluorescence processes. Neural networks are then utilized for modeling the far more complex coherent strong–field dynamics of potassium atoms.zeige mehrzeige weniger
  • Die Technik der ultraschnellen Polarisationspulsformung wird auf ein Modell-Quantensystem, das Kalium-Dimer angewandt. Die Polarisationsabhängigkeit der Ionisationsdynamik wird zunächst mit Anrege-Abfrage-Experimenten untersucht, und anschließend in einem adaptiven Optimierungsexperiment mit polarisationsgeformten Nahinfrarot-Laserpulsen ausgenutzt. Die Polarisationspulsformungstechnik wird auf den ultravioletten Spektralbereich erweitert, und es werden Methoden zur Erzeugung und Charakterisierung von polarisationsgeformten UV-PulsenDie Technik der ultraschnellen Polarisationspulsformung wird auf ein Modell-Quantensystem, das Kalium-Dimer angewandt. Die Polarisationsabhängigkeit der Ionisationsdynamik wird zunächst mit Anrege-Abfrage-Experimenten untersucht, und anschließend in einem adaptiven Optimierungsexperiment mit polarisationsgeformten Nahinfrarot-Laserpulsen ausgenutzt. Die Polarisationspulsformungstechnik wird auf den ultravioletten Spektralbereich erweitert, und es werden Methoden zur Erzeugung und Charakterisierung von polarisationsgeformten UV-Pulsen vorgestellt. Systematische Abtastungen von Doppelpulsfolgen werden für die Untersuchung und Interpretation von Kontrollmechanismen vorgestellt. Geformte Laserpulse werden verwendet, um umfangreiche Daten über die Licht-Materie Wechselwirkung zu sammeln. Neuronale Netzwerke werden erstmals dazu verwendet, um aus den Daten numerische Modelle für die Wechselwirkung von Licht und Materie zu erzeugen. Die Durchführbarkeit dieses Ansatzes wird zunächst an SHG und Fluoreszenzprozessen demonstriert. Neuronale Netzwerke werden desweiteren dazu verwendet, um die weitaus komplexere Dynamik von Kaliumatomen in starken elektromagnetischen Feldern zu modellieren.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Reimer Andreas Selle
URN:urn:nbn:de:bvb:20-opus-25596
Dokumentart:Dissertation
Titelverleihende Fakultät:Universität Würzburg, Fakultät für Physik und Astronomie
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Datum der Abschlussprüfung:19.12.2007
Sprache der Veröffentlichung:Englisch
Erscheinungsjahr:2007
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Normierte Schlagworte (GND):Lasertechnologie; Impulslaser; Optimale Kontrolle
Freie Schlagwort(e):Neuronale Netzwerke; Polarisation; Pulsformung; adaptive Optimierung
adaptive optimization; neural networks; polarization; pulse shaping
Fachklassifikation Physik (PACS):80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.50.-m Photochemistry (for single molecule photochemistry, see 82.37.Vb); Optical spectroscopy in atomic and molecular physics, see 32.30.-r and 33.20.-t; Optical spectroscopy in condensed matter, see 78.35.+c, 78.40.-q, and 78.47.+p / 82.50.Nd Control of photochemical reactions
Datum der Freischaltung:20.12.2007
Betreuer:Prof. Dr. Tobias Brixner