• Treffer 3 von 4
Zurück zur Trefferliste

Few temporally distributed brain connectivity states predict human cognitive abilities

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-349874
  • Highlights • Brain connectivity states identified by cofluctuation strength. • CMEP as new method to robustly predict human traits from brain imaging data. • Network-identifying connectivity ‘events’ are not predictive of cognitive ability. • Sixteen temporally independent fMRI time frames allow for significant prediction. • Neuroimaging-based assessment of cognitive ability requires sufficient scan lengths. Abstract Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined asHighlights • Brain connectivity states identified by cofluctuation strength. • CMEP as new method to robustly predict human traits from brain imaging data. • Network-identifying connectivity ‘events’ are not predictive of cognitive ability. • Sixteen temporally independent fMRI time frames allow for significant prediction. • Neuroimaging-based assessment of cognitive ability requires sufficient scan lengths. Abstract Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Rare states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture and to be highly subject-specific. However, it is unclear whether such network-defining states also contribute to individual variations in cognitive abilities – which strongly rely on the interactions among distributed brain regions. By introducing CMEP, a new eigenvector-based prediction framework, we show that as few as 16 temporally separated time frames (< 1.5% of 10 min resting-state fMRI) can significantly predict individual differences in intelligence (N = 263, p < .001). Against previous expectations, individual's network-defining time frames of particularly high cofluctuation do not predict intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest connectivity, temporally distributed information is necessary to extract information about cognitive abilities. This information is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Maren H. Wehrheim, Joshua Faskowitz, Olaf Sporns, Christian J. Fiebach, Matthias Kaschube, Kirsten Hilger
URN:urn:nbn:de:bvb:20-opus-349874
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Humanwissenschaften (Philos., Psycho., Erziehungs- u. Gesell.-Wissensch.) / Institut für Psychologie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):NeuroImage
Erscheinungsjahr:2023
Band / Jahrgang:277
Aufsatznummer:120246
Originalveröffentlichung / Quelle:NeuroImage (2023) 277:120246. DOI: 10.1016/j.neuroimage.2023.120246
DOI:https://doi.org/10.1016/j.neuroimage.2023.120246
Allgemeine fachliche Zuordnung (DDC-Klassifikation):1 Philosophie und Psychologie / 15 Psychologie / 150 Psychologie
Freie Schlagwort(e):functional connectivity; general cognitive ability; machine learning; predictive modeling; resting state
Datum der Freischaltung:22.05.2024
EU-Projektnummer / Contract (GA) number:617891
OpenAIRE:OpenAIRE
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International