• search hit 2 of 659
Back to Result List

Starting foraging life: Early calibration and daily use of the navigational system in \(Cataglyphis\) ants

Start in den Außendienst: Zur anfänglichen Kalibrierung und alltäglichen Nutzung des Navigationssystem in \(Cataglyphis\)-Ameisen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-159951
  • Cataglyphis ants are famous for their navigational abilities. They live in hostile habitats where they forage as solitary scavengers covering distances of more than hundred thousand times their body lengths. To return to their nest with a prey item – mainly other dead insects that did not survive the heat – Cataglyphis ants constantly keep track of their directions and distances travelled. The navigational strategy is called path integration, and it enables an ant to return to the nest in a straight line using its home vector. Cataglyphis antsCataglyphis ants are famous for their navigational abilities. They live in hostile habitats where they forage as solitary scavengers covering distances of more than hundred thousand times their body lengths. To return to their nest with a prey item – mainly other dead insects that did not survive the heat – Cataglyphis ants constantly keep track of their directions and distances travelled. The navigational strategy is called path integration, and it enables an ant to return to the nest in a straight line using its home vector. Cataglyphis ants mainly rely on celestial compass cues, like the position of the sun or the UV polarization pattern, to determine directions, and they use an idiothetic step counter and optic flow to measure distances. In addition, they acquire information about visual, olfactory and tactile landmarks, and the wind direction to increase their chances of returning to the nest safe and sound. Cataglyphis’ navigational performance becomes even more impressive if one considers their life style. Most time of their lives, the ants stay underground and perform tasks within the colony. When they start their foraging careers outside the nest, they have to calibrate their compass systems and acquire all information necessary for navigation during subsequent foraging. This navigational toolkit is not instantaneously available, but has to be filled with experience. For that reason, Cataglyphis ants perform a striking behavior for up to three days before actually foraging. These so-called learning walks are crucial for the success as foragers later on. In the present thesis, both the ontogeny and the fine-structure of learning walks has been investigated. Here I show with displacement experiments that Cataglyphis ants need enough space and enough time to perform learning walks. Spatially restricted novices, i. e. naïve ants, could not find back to the nest when tested as foragers later on. Furthermore, ants have to perform several learning walks over 1-3 days to gain landmark information for successful homing as foragers. An increasing number of feeder visits also increases the importance of landmark information, whereas in the beginning ants fully rely on their path-integration vector. Learning walks are well-structured. High-speed video analysis revealed that Cataglyphis ants include species-specific rotational elements in their learning walks. Greek Cataglyphis ants (C. noda and C. aenescens) inhabiting a cluttered pine forest perform voltes, small walked circles, and pirouettes, tight turns about the body axis with frequent stopping phases. During the longest stopping phases, the ants gaze back to their nest entrance. The Tunisian Cataglyphis fortis ants inhabiting featureless saltpans only perform voltes without directed gazes. The function of voltes has not yet been revealed. In contrast, the fine structure of pirouettes suggests that the ants take snapshots of the panorama towards their homing direction to memorize the nest’s surroundings. The most likely hypothesis was that Cataglyphis ants align the gaze directions using their path integrator, which gets directional input from celestial cues during foraging. To test this hypothesis, a manipulation experiment was performed changing the celestial cues above the nest entrance (no sun, no natural polarization pattern, no UV light). The accurately directed gazes to the nest entrance offer an easily quantifiable readout suitable to ask the ants where they expect their nest entrance. Unexpectedly, all novices performing learning walks under artificial sky conditions looked back to the nest entrance. This was especially surprising, because neuronal changes in the mushroom bodies and the central complex receiving visual input could only be induced with the natural sky when comparing test animals with interior workers. The behavioral findings indicated that Cataglyphis ants use another directional reference system to align their gaze directions during the longest stopping phases of learning walk pirouettes. One possibility was the earth’s magnetic field. Indeed, already disarraying the geomagnetic field at the nest entrance with an electromagnetic flat coil indicated that the ants use magnetic information to align their looks back to the nest entrance. To investigate this finding further, ants were confronted with a controlled magnetic field using a Helmholtz coil. Elimination of the horizontal field component led to undirected gaze directions like the disarray did. Rotating the magnetic field about 90°, 180° or -90° shifted the ants’ gaze directions in a predictable manner. Therefore, the earth’s magnetic field is a necessary and sufficient reference system for aligning nest-centered gazes during learning-walk pirouettes. Whether it is additionally used for other navigational purposes, e. g. for calibrating the solar ephemeris, remains to be tested. Maybe the voltes performed by all Cataglyphis ant species investigated so far can help to answer this question..show moreshow less
  • Cataglyphis-Ameisen sind für ihre Navigationsfähigkeiten berühmt. Sie bewohnen lebens- feindliche Regionen in denen sie einzeln und über weite Strecken Futter suchen müssen. Um mit Beute (meist ein totes Insekt, das die große Hitze nicht überlebt hat) zu ihrem Nest zurückzukehren, bedienen sie sich einer Navigationsstrategie, die als Wegintegration beze- ichnet wird. Dabei müssen die Ameisen die zurückgelegten Distanzen messen und jeden Richtungswechsel registrieren, um schließlich in gerader Linie nachhause zurückkehren zu können. Als KompassCataglyphis-Ameisen sind für ihre Navigationsfähigkeiten berühmt. Sie bewohnen lebens- feindliche Regionen in denen sie einzeln und über weite Strecken Futter suchen müssen. Um mit Beute (meist ein totes Insekt, das die große Hitze nicht überlebt hat) zu ihrem Nest zurückzukehren, bedienen sie sich einer Navigationsstrategie, die als Wegintegration beze- ichnet wird. Dabei müssen die Ameisen die zurückgelegten Distanzen messen und jeden Richtungswechsel registrieren, um schließlich in gerader Linie nachhause zurückkehren zu können. Als Kompass nutzen sie Himmelsinformationen, wie den Stand der Sonne oder das UV-Polarisationsmuster, und für die Distanzmessung verwenden sie einen inneren Schrittzäh- ler sowie optischen Fluss. Außerdem nutzen sie alle weiteren Informationen, die hilfreich sein könnten, um sicher zum Nest zurückzukehren. Dazu gehören visuelle, olfaktorische und taktile Landmarken sowie die Richtung des Windes. Die Navigationsleistungen von Cataglyphis-Ameisen sind insbesondere dann bemerkenswert, wenn man sich bewusst macht, dass sie die meiste Zeit ihres Lebens unter der Erde verbringen. Dort übernehmen sie Auf- gaben im Nest bis sie dann schließlich alt genug sind, um draußen Futter zu suchen. Dann müssen sie ihre Kompasssysteme kalibrieren und alle Informationen lernen, die sie für eine erfolgreiche Futtersuche brauchen. Dieses sogenannte Navigations-Toolkit steht den Ameisen nicht automatisch zur Verfügung, vielmehr müssen sie es mit eigener Erfahrung füllen. Dafür nutzen sie die ersten ein bis drei Tage außerhalb des Nestes. Während dieser Zeit suchen sie kein Futter, sondern vollführen sogenannte Lernläufe. Lernläufe sind unabdingbar, um später als Fourageur erfolgreich zu sein. In der vorliegenden Doktorarbeit wurde sowohl die zeitliche und räumliche Entwicklung der Lernläufe als auch deren Feinstruktur untersucht. Mit Versetzungsexperimenten konnte ich zeigen, dass Ameisen genügend Zeit und Raum brauchen, um Lernläufe durchzuführen. Wurden Neulinge während ihrer Lernläufe räumlich eingeschränkt, so konnten sie nicht zum Nest zurückfinden, wenn sie als erfahrene Fourageure getestet wurden. Außerdem brauchen die Ameisen ein bis drei Tage Zeit, um ein Landmarkenpanorama zu erlernen, das sie dann später erfolgreich zur Landmarkenorientierung nutzen können. Eine größere Anzahl an Besuchen am Futterplatz erhöht die Wichtigkeit von Landmarkeninformation für die Ameisen, die anfangs nur ihren Wegintegrator nutzen. Lernläufe weisen eine beeindruckende Struktur auf. Mit High-Speed-Videoaufnahmen konnte gezeigt werden, dass Cataglyphis-Ameisen artspezifische Drehungen während der Lernläufe vollführen. Die griechischen Cataglyphis-Ameisen (C. noda und C. aenescens) leben in einem Pinienwald, der ihnen ein vielfältiges und landmarkenreiches Panorama bietet. Ihre Lernläufe beinhalten zwei Drehungsformen, nämlich sogenannte Volten (kleine gelaufene Kreise) und Pirouetten (enge Drehungen um die eigene Körperachse mit häufigen Stoppphasen). Während der längsten Stoppphase einer Pirouette schauen die Ameisen zurück in die Richtung ihres Nesteingangs, obwohl sie ihn nicht direkt sehen können. Die tunesischen Cataglyphis-Ameisen (C. fortis ) leben auf einem landmarkenarmen Salzsee. Sie vollführen nur Volten und machen keine Pirouetten während ihrer Lernläufe. Die Funktion von Volten ist noch unbekannt, wohingegen die Feinstruktur der Pirouetten die Vermutung nahelegt, dass die Ameisen sogenannte Schnappschüsse von der Umgebung ihres Nestes machen, um dorthin zurückkehren zu können. Es schien wahrscheinlich, dass die Ameisen ihren Wegintegrator nutzen, um ihre Blickrich- tungen zum Nest auszurichten. Während der Futtersuche bekommt der Wegintegrator seine Richtungsinformationen vom Himmelskompass. Daher wurde ein Experiment geplant und durchgeführt bei dem die Himmelsinformationen über dem Nesteingang manipuliert wurden (keine Sicht auf die Sonne, kein natürliches Polarisationsmuster oder kein UV-Licht). Die nest- zentrierten Blickrichtungen der Ameisen ermöglichen es relativ einfach zu überprüfen, ob die Ameisen die Position des Nesteingangs kennen. Überraschenderweise schauten die Ameisen unter allen Bedingungen weiterhin zurück zum Nesteingang. Dies war insbesondere be- merkenswert, da die Himmelsmanipulation neuronale Veränderungen in den Pilzkörpern und dem Zentralkomplex (das sind Regionen im Gehirn der Ameisen, die visuelle Informationen verarbeiten) bewirkten bzw. diese verhinderten. Nur unter natürlichen Bedingungen, also bei freiem Blick auf die Sonne, gab es Unterschiede auf neuronaler Ebene zwischen den Testtieren und den Innendiensttieren, die als Kontrolle dienten. Die Ergebnisse des Verhaltensversuchs deuteten darauf hin, dass die Ameisen ein anderes direktionales Referenzsystem nutzen, um ihre Blickrichtungen zu kontrollieren. Eine Möglichkeit war das Erdmagnetfeld. Tatsächlich zeigte schon die experimentelle Streuung des Magnetfelds am Nesteingang mittels einer elektromagnetischen Flachspule, dass die Ameisen tatsächlich Magnetinformationen nutzen, um ihre Blicke auszurichten. Die Blickrichtungen während der längsten Stoppphasen waren nicht mehr zum Nesteingang gerichtet. Um dies genauer zu untersuchen wurden die Ameisen mit dem kontrollierten Magnetfeld einer Helmholtzspule konfrontiert. Die Eliminierung der Horizontalkomponente des Magnetfelds bewirkte wiederum, dass die Ameisen nicht zum Nesteingang zurückschauten. Wurde die Horizontalkomponente jedoch um 90◦, 180◦ oder -90◦ gedreht, so folgten die Blickrichtungen der Ameisen dieser Drehung voraussagbar im selben Winkel. Dies zeigt, dass das Erdmagnetfeld tatsächlich das Referenzsystem für die Ausrichtungen der Blicke während der Lernlaufpirouetten darstellt. Ob es auch noch an- deren Navigationszwecken, wie beispielsweise der Kalibrierung der solaren Ephemeris dient, muss zukünftig überprüft werden. Vielleicht können die Volten, die alle bisher untersuchtenshow moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Pauline Nikola FleischmannORCiD
URN:urn:nbn:de:bvb:20-opus-159951
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Referee:Prof. Dr. Wolfgang Rössler
Date of final exam:2018/03/26
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-15995
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
GND Keyword:Cataglyphis
Tag:Learning walk
Release Date:2019/03/26
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International