• Treffer 9 von 29
Zurück zur Trefferliste

Predicting fluorescence quantum yields for molecules in solution: A critical assessment of the harmonic approximation and the choice of the lineshape function

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-199305
  • For the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help. However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy intoFor the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help. However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy into vibrational energy, the highly excited final vibrational states deviate greatly from harmonic oscillator eigenfunctions. We employ a time-dependent formalism to compute radiative and non-radiative rates for transitions and study the dependence on model parameters. For several coumarin dyes we compare different adiabatic and vertical harmonic models (AS, ASF, AH, VG, VGF, VH), in order to dissect the importance of displacements, frequency changes and Duschinsky rotations. In addition we analyze the effect of different broadening functions (Gaussian, Lorentzian or Voigt). Moreover, to assess the qualitative influence of anharmonicity on the internal conversion rate, we develop a simplified anharmonic model. We adress the reliability of these models considering the potential errors introduced by the harmonic approximation and the phenomenological width of the broadening function.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Alexander Humeniuk, Margarita Bužančić, Joscha Hoche, Javier Cerezo, Roland Mitric, Fabrizio Santoro, Vlasta Bonačić-Koutecky
URN:urn:nbn:de:bvb:20-opus-199305
Dokumentart:Preprint (Vorabdruck)
Institute der Universität:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):The Journal of Chemical Physics
Erscheinungsjahr:2020
Originalveröffentlichung / Quelle:Journal of Chemical Physics 152, 054107 (2020); https://doi.org/10.1063/1.5143212
URL der Erstveröffentlichung:https://doi.org/10.1063/1.5143212
Sonstige beteiligte Institutionen:Center of Excellence for Science and Technology - Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Poljička cesta 35, 2100 Split, Croatia
Sonstige beteiligte Institutionen:Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Sonstige beteiligte Institutionen:Istituto di Chimica dei Composti Organometallici (ICCOM–CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy.
Sonstige beteiligte Institutionen:Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 54 Chemie / 541 Physikalische Chemie
Freie Schlagwort(e):fluorescence quantum yield
Datum der Freischaltung:10.02.2020
EU-Projektnummer / Contract (GA) number:646737
OpenAIRE:OpenAIRE
Anmerkungen:
Accepted Manuscript.
Anmerkungen:
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in A. Humeniuk et al. J. Chem. Phys. 152, 054107 (2020); https://doi.org/10.1063/1.5143212 and may be found at https://doi.org/10.1063/1.5143212.
Lizenz (Deutsch):License LogoDeutsches Urheberrecht