• Treffer 2 von 2
Zurück zur Trefferliste

Experimental and mathematical analysis of cAMP nanodomains

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-170972
  • In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear.In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Christian Lohse, Andreas Bock, Isabella Maiellaro, Annette Hannawacker, Lothar R. Schad, Martin J. Lohse, Wolfgang R. Bauer
URN:urn:nbn:de:bvb:20-opus-170972
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Institut für Pharmakologie und Toxikologie
Medizinische Fakultät / Medizinische Klinik und Poliklinik I
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):PLoS ONE
Erscheinungsjahr:2017
Band / Jahrgang:12
Heft / Ausgabe:4
Seitenangabe:e0174856
Originalveröffentlichung / Quelle:PLoS ONE 12(4):e0174856 (2017). DOI: 10.1371/journal.pone.0174856
DOI:https://doi.org/10.1371/journal.pone.0174856
PubMed-ID:https://pubmed.ncbi.nlm.nih.gov/28406920
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):absorption; adenylyl cyclase signaling cascade; cell fusion; cyclic nucleotides such as cyclic adenosine monophosphate; cytosol; fluorescence resonance energy transfer; isoproterenol; radii; yellow fluorescent protein
Datum der Freischaltung:14.10.2019
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International