• Treffer 1 von 2
Zurück zur Trefferliste

Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-254012
  • Macrophages are key players of the innate immune system that can roughly be divided into the pro-inflammatory M1 type and the anti-inflammatory, pro-healing M2 type. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates a proper healing and subsequent regeneration. One promising strategy to drive macrophage polarization by biomaterials is precise control over biomaterial geometry. For regenerative approaches, it is of particular interest to identify geometrical parameters that direct human macrophageMacrophages are key players of the innate immune system that can roughly be divided into the pro-inflammatory M1 type and the anti-inflammatory, pro-healing M2 type. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates a proper healing and subsequent regeneration. One promising strategy to drive macrophage polarization by biomaterials is precise control over biomaterial geometry. For regenerative approaches, it is of particular interest to identify geometrical parameters that direct human macrophage polarization. For this purpose, we advanced melt electrowriting (MEW) towards the fabrication of fibrous scaffolds with box-shaped pores and precise inter-fiber spacing from 100 μm down to only 40 μm. These scaffolds facilitate primary human macrophage elongation accompanied by differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 μm. These new findings can be important in helping to design new biomaterials with an enhanced positive impact on tissue regeneration.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Tina Tylek, Carina Blum, Andrei Hrynevich, Katrin Schlegelmilch, Tatjana Schilling, Paul D Dalton, Jürgen Groll
URN:urn:nbn:de:bvb:20-opus-254012
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Biofabrication
Erscheinungsjahr:2020
Band / Jahrgang:12
Heft / Ausgabe:2
Aufsatznummer:025007
Originalveröffentlichung / Quelle:Biofabrication 2020, 12(2):025007. DOI: 10.1088/1758-5090/ab5f4e
DOI:https://doi.org/10.1088/1758-5090/ab5f4e
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):3D scaffolds; cell elongation; human macrophages; macrophage polarization; melt electrowriting (MEW)
Datum der Freischaltung:28.01.2022
EU-Projektnummer / Contract (GA) number:617989
OpenAIRE:OpenAIRE
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung