• search hit 2 of 2
Back to Result List

Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbα

Please always quote using this URN: urn:nbn:de:bvb:20-opus-233048
  • Neutrophils are key components of the innate immune response, providing host defence against infection and being recruited to non-microbial injury sites. Platelets act as a trigger for neutrophil extravasation to inflammatory sites but mechanisms and tissue-specific aspects of these interactions are currently unclear. Here, we use bacterial endotoxin in mice to trigger an innate inflammatory response in different tissues and measure neutrophil invasion with or without platelet reduction. We show that platelets are essential for neutrophilNeutrophils are key components of the innate immune response, providing host defence against infection and being recruited to non-microbial injury sites. Platelets act as a trigger for neutrophil extravasation to inflammatory sites but mechanisms and tissue-specific aspects of these interactions are currently unclear. Here, we use bacterial endotoxin in mice to trigger an innate inflammatory response in different tissues and measure neutrophil invasion with or without platelet reduction. We show that platelets are essential for neutrophil infiltration to the brain, peritoneum and skin. Neutrophil numbers do not rise above basal levels in the peritoneum and skin and are decreased (~60%) in the brain when platelet numbers are reduced. In contrast neutrophil infiltration in the lung is unaffected by platelet reduction, up-regulation of CXCL-1 (2·4-fold) and CCL5 (1·4-fold) acting as a compensatory mechanism in platelet-reduced mice during lung inflammation. In brain inflammation targeting platelet receptor GPIbα results in a significant decrease (44%) in platelet-mediated neutrophil invasion, while maintaining platelet numbers in the circulation. These results suggest that therapeutic blockade of platelet GPIbα could limit the harmful effects of excessive inflammation while minimizing haemorrhagic complications of platelet reduction in the brain. The data also demonstrate the ability to target damaging brain inflammation in stroke and related disorders without compromising lung immunity and hence risk of pneumonia, a major complication post stroke. In summary, our data reveal an important role for platelets in neutrophil infiltration to various tissues, including the brain, and so implicate platelets as a key, targetable component of cerebrovascular inflammatory disease or injury.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: James A. Giles, Andrew D. Greenhalgh, Adam Denes, Bernhard Nieswandt, Graham Coutts, Barry W. McColl, Stuart M. Allan
URN:urn:nbn:de:bvb:20-opus-233048
Document Type:Journal article
Faculties:Medizinische Fakultät / Medizinische Klinik und Poliklinik II
Fakultät für Biologie / Rudolf-Virchow-Zentrum
Language:English
Parent Title (English):Immunology
Year of Completion:2018
Volume:154
Pagenumber:322-328
Source:Immunology (2018) 154:322-328. https://doi.org/10.1111/imm.12892
DOI:https://doi.org/10.1111/imm.12892
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:brain; inflammation; neuroinflammation
Release Date:2024/09/04
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International