• search hit 2 of 4
Back to Result List

Engineered Human Airway Mucosa for Modelling Respiratory Infections: Characterisation and Applications

Gewebemodelle der humanen Atemwegsschleimhaut für Infektionsstudien der Atemwege: Charakterisierung und Anwendungen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-322414
  • Respiratory infections are a significant health concern worldwide, and the airway epithelium plays a crucial role in regulating airway function and modulating inflammatory processes. However, most studies on respiratory infections have used cell lines or animal models, which may not accurately reflect native physiological conditions, especially regarding human pathogens. We generated human nasal mucosa (hNM) and tracheobronchial mucosa (hTM) models to address this issue using primary human airway epithelial cells and fibroblasts. WeRespiratory infections are a significant health concern worldwide, and the airway epithelium plays a crucial role in regulating airway function and modulating inflammatory processes. However, most studies on respiratory infections have used cell lines or animal models, which may not accurately reflect native physiological conditions, especially regarding human pathogens. We generated human nasal mucosa (hNM) and tracheobronchial mucosa (hTM) models to address this issue using primary human airway epithelial cells and fibroblasts. We characterised these human airway tissue models (hAM) using high speed video microscopy, single cell RNA sequencing, immunofluorescence staining, and ultrastructural analyses that revealed their complexity and cellular heterogeneity. We demonstrated that Bordetella pertussis virulence factor adenylate cyclase toxin (CyaA) elevated the intracellular production of cyclic adenosine monophosphate (cAMP) and secretion of interleukin (IL) 6, IL 8, and human beta defensin 2 (HBD2). In addition, we compared the responses of the tissue models from two different anatomical sites (the upper and lower respiratory mucosa) and are the first to report such differential susceptibility towards CyaA using 3D primary airway cell derivedmodels. The effect of toxin treatment on the epithelial barrier integrity of the tissue models was assessed by measuring the flux of fluorescein isothiocyanate (FITC)-conjugated dextran across the models. Though we observed a cell type specific response with respect to intracellular cAMP production and IL 6, IL 8, and HBD2 secretion in the models treated with CyaA on the apical side, the epithelial membrane barrier integrity was not compromised. In addition to toxin studies, using these characterised models, we established viral infection studies for Influenza A (IAV), Respiratory Syncytial Virus subtype B (RSV), and severe acute respiratory syndrome coronavirus 2. We visualised the morphological consequences of the viral infection using ultrastructural analysis and immunofluorescence. We verified the effective infection in hAM by measuring the viral RNA using RTqPCR and detected elevated cytokine levels in response to infection using biochemical assays. In contrast to cell lines, studies on viral infection using hAM demonstrated that infected areas were localized to specific regions. This led to the formation of infection hotspots, which were more likely to occur when models derived from different donors were infected separately with all three viruses. IAV infected tissue models replicate the clinical findings of H1N1 infection, such as mucus hypersecretion, cytokine release, and infection-associated epithelial cell damage.Finally, we paved the steps towards understanding the impact of IAV infection on disease models. We generated hTM from biopsies obtained from chronic obstructive pulmonary disease (COPD) patients. As a model to study the impact of COPD on respiratory infections, considering the increase in COPD cases in the past decade and the continued predicted increase in the future. We established the IAV infection protocol to capture the early infection signatures in non-COPD and COPD conditions using scRNA-seq. We investigated the infection kinetics of IAV (H1N1-clinical isolate) in hTM and found that viruses were actively released approximately 24 hours post infection. The scRNA-seq data from the hTM derived from non-COPD and COPD patients, revealed lower levels of SCGB1A1 (club cell marker) gene expression in the COPD-control group compared to the non-COPD control group, consistent with previous clinical studies. Furthermore, we observed that IAV infection elevated SCGB1A1 gene expression especially in secretory cells of both the COPD and non COPD groups. This may imply the role of club cells as early responders during IAV infection providing epithelial repair, regeneration, and resistance to spread of infection. This is the first study to address the molecular diversity in COPD and non-COPD disease models infected with IAV investigating the early response (6 h) of specific cell types in the human lower airways towards infection using scRNA-seq. These findings highlight the potential interplay between COPD, IAV infection, and altered vulnerability to other viral infections and respiratory illnesses making the hAM applicable for addressing more specific research questions and validating potential targets, such as SCGB1A1 targeted therapy for chronic lung diseases. Our findings demonstrate the potential of the hNM and hTM for investigating respiratory infections, innate immune responses, and trained immunity in non-immune cells. Our experiments show that hAM may represent a more accurate representation of the native physiological condition and improve our understanding of the disease mechanisms. Furthermore, these models promote non-animal research as they replicate clinical findings. We can further increase their complexity by incorporating dynamic flow systems and immune cells catered to the research question.show moreshow less
  • Infektionen der Atemwege stellen weltweit ein erhebliches Gesundheitsproblem dar, und das Epithel der Atemwege spielt eine entscheidende Rolle bei der Regulierung der Atemwegsfunktion und der Steuerung von Entzündungsprozessen. In den meisten Studien zu Atemwegsinfektionen wurden jedoch Zelllinien oder Tiermodelle verwendet, die die natürlichen physiologischen Bedingungen nicht genau widerspiegeln, insbesondere im Hinblick auf menschliche Krankheitserreger. Wir haben Modelle der menschlichen Nasenschleimhaut (hNM) und derInfektionen der Atemwege stellen weltweit ein erhebliches Gesundheitsproblem dar, und das Epithel der Atemwege spielt eine entscheidende Rolle bei der Regulierung der Atemwegsfunktion und der Steuerung von Entzündungsprozessen. In den meisten Studien zu Atemwegsinfektionen wurden jedoch Zelllinien oder Tiermodelle verwendet, die die natürlichen physiologischen Bedingungen nicht genau widerspiegeln, insbesondere im Hinblick auf menschliche Krankheitserreger. Wir haben Modelle der menschlichen Nasenschleimhaut (hNM) und der Tracheobronchialschleimhaut (hTM) entwickelt, um dieses Problem mit primären menschlichen Epithelzellen und Fibroblasten der Atemwege zu lösen. Wir charakterisierten diese humanen Atemwegsgewebemodelle (hAM) mithilfe von Hochgeschwindigkeits-Videomikroskopie, Einzelzell-RNA-Sequenzierung (scRNA- seq), Immunfluoreszenzfärbung und ultrastrukturellen Analysen, die ihre Komplexität und zelluläre Heterogenität offenlegten. Wir konnten zeigen, dass der Virulenzfaktor Adenylatzyklasetoxin (CyaA) von Bordetella pertussis die intrazelluläre Produktion von zyklischem Adenosinmonophosphat (cAMP) und die Sekretion von Interleukin (IL)-6, IL-8 und humanem Beta-Defensin-2 (HBD-2) erhöht. Darüber hinaus verglichen wir die Reaktionen der Gewebemodelle aus zwei verschiedenen anatomischen Bereichen (obere und untere Atemwegsschleimhaut) und sind die ersten, die eine solche unterschiedliche Empfindlichkeit gegenüber CyaA anhand von 3D-Modellen aus Atemwegsprimärzellen berichten. Die Auswirkung der Toxinbehandlung auf die epitheliale Barriereintegrität der Gewebemodelle wurde durch Messung des Flusses von Fluorescein-Isothiocyanat (FITC)-konjugiertem Dextran durch die Modelle ermittelt. Obwohl wir eine zelltypspezifische Reaktion in Bezug auf die intrazelluläre cAMP-Produktion und die Sekretion von IL-6, IL-8 und HBD-2 in den mit CyaA behandelten Modellen auf der apikalen Seite beobachteten, war die Integrität der Epithelmembranbarriere nicht beeinträchtigt. Anhand dieser gut charakterisierten Modelle haben wir Virusinfektionsstudien für Influenza A (IAV), das respiratorische Synzytialvirus Subtyp B (RSV) und das schwere akute respiratorische Syndrom Coronavirus 2 (SARS-CoV-2) durchgeführt. Wir haben die morphologischen Folgen der Virusinfektion mithilfe von Ultrastrukturanalysen und Immunfluoreszenz sichtbar gemacht. Wir verifizierten die effektive Infektion in hAM durch Messung der viralen RNA mittels RT-qPCR und wiesen erhöhte IL-6- und IL-8- Spiegel als Reaktion auf die Infektion mittels biochemischer Assays nach. Im Gegensatz zu Zelllinien zeigten die Virusinfektionsstudien mit hAM, dass die infizierten Bereiche auf bestimmte Regionen beschränkt waren, was zu Infektions-Hotspots führte, die eher bei Modellen auftraten, die von verschiedenen Spendern stammten und mit allen drei Viren separat infiziert waren. IAV-infizierte Gewebemodelle replizieren die klinischen Befunde einer H1N1-Infektion, wie beispielsweise Schleimhypersekretion, Zytokinfreisetzung und infektionsassoziierte Epithelzellschäden. Schließlich haben wir die Auswirkungen einer IAV-Infektion auf Krankheitsmodelle untersucht. Dazu haben wir hTM aus Biopsien von Patienten mit chronisch obstruktiver Lungenerkrankung (COPD) isoliert. In Anbetracht der Zunahme an COPD-Fällen in den letzten zehn Jahren und der prognostizierten weiteren Zunahme in der Zukunft dient dies als Modell zur Untersuchung der Auswirkungen von COPD auf Atemwegsinfektionen. Wir erstellten ein IAV-Infektionsprotokoll, um die frühen Infektionssignaturen bei nicht-COPD- und COPD-Patienten mit Hilfe von scRNA-seq zu erfassen. Bei der untersuchten der Infektionskinetiken von IAV (klinisches H1N1- Isolat) in hTM stellten wir fest, dass die Viren etwa 24 Stunden nach der Infektion aktiv freigesetzt wurden. Die scRNA-seq-Daten von hTM, zeigten eine geringere Genexpression von SCGB1A1 (Clubzellmarker) in der COPD-Kontrollgruppe verglichen mit der nicht-COPD-Kontrollgruppe, was mit früheren klinischen Studien übereinstimmt. Darüber hinaus stellten wir fest, dass eine IAV-Infektion die SCGB1A1- Genexpression insbesondere in den sekretorischen Zellen beider Gruppen erhöhte. Dies könnte darauf hindeuten, dass Keimzellen während einer IAV-Infektion früh aktiviert werden und damit eventuell für die Reparatur und Regeneration des Epithels sorgen sowie der Ausbreitung der Infektion entgegenwirken. Hierbei handelt es sich um die erste Studie, die sich mit der molekularen Vielfalt in mit IAV infizierten COPD- und nicht-COPD-Modellen befasst und dabei ein besonderes Augenmerk auf die frühe Reaktion (6 Stunden) spezifischer Zelltypen der unteren Atemwege legt und diese mittels scRNA-seq untersucht. Diese Ergebnisse unterstreichen das potenzielle Zusammenspiel zwischen COPD, IAV-Infektion und der Anfälligkeit für andere Virusinfektionen sowie anderer Atemwegserkrankungen. Das zeight, dass die hAM für die Beantwortung spezifischerer Forschungsfragen und die Validierung potenzieller Zielstrukturen, wie z. B. einer gezielten SCGB1A1-Therapie für chronische Lungenerkrankungen, geeignet sind. Unsere Ergebnisse zeigen das Potenzial von hNM und hTM für die Untersuchung von Atemwegsinfektionen, angeborenen Immunreaktionen und ausgebildeter Immunität in nicht-immunen Zellen. Mit unseren Experimenten haben wir gezeigt, dass hAM eine genauere Darstellung des natürlichen physiologischen Zustands darstellen und unser Verständnis der Krankheitsmechanismen verbessern kann. Darüber hinaus könnten diese Modelle die Forschung ohne Tierversuche fördern, da sie dazu neigen, klinische Befunde zu replizieren. Wir können ihre Komplexität weiter erhöhen, indem wir dynamische Strömungssysteme und auf die Forschungsfrage abgestimmte Immunzellen einbeziehen.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Rinu SivarajanGND
URN:urn:nbn:de:bvb:20-opus-322414
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Medizinische Fakultät / Lehrstuhl für Tissue Engineering und Regenerative Medizin
Referee:Dr. Maria Steinke
Date of final exam:2023/07/13
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-32241
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:Atemwege
Tag:Atemwegsschleimhaut; Gewebemodelle; Infektionsstudien
Release Date:2023/07/25
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International