• Treffer 1 von 2
Zurück zur Trefferliste

Triplet Excitons and Associated Efficiency‐Limiting Pathways in Organic Solar Cell Blends Based on (Non‐) Halogenated PBDB‐T and Y‐Series

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-312164
  • The great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has longThe great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Jeannine Grüne, Giacomo Londi, Alexander J. Gillett, Basil Stähly, Sebastian Lulei, Maria Kotova, Yoann Olivier, Vladimir Dyakonov, Andreas Sperlich
URN:urn:nbn:de:bvb:20-opus-312164
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Functional Materials
Erscheinungsjahr:2023
Band / Jahrgang:33
Heft / Ausgabe:12
Aufsatznummer:2212640
Originalveröffentlichung / Quelle:Advanced Functional Materials 2023, 33(12):2212640. DOI: 10.1002/adfm.202212640
DOI:https://doi.org/10.1002/adfm.202212640
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):halogenation; non‐fullerene acceptors; organic photovoltaics; spin physics; triplet excitons
Datum der Freischaltung:15.06.2023
Datum der Erstveröffentlichung:16.03.2023
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International