Refine
Has Fulltext
- yes (57)
Is part of the Bibliography
- yes (57)
Year of publication
Document Type
- Doctoral Thesis (57)
Keywords
- Biomaterial (7)
- Hydrogel (7)
- Tissue Engineering (6)
- Calciumphosphate (5)
- Knochenzement (5)
- Ringöffnungspolymerisation (4)
- 3D-Druck (3)
- Elektrospinnen (3)
- Nanopartikel (3)
- Polymere (3)
Institute
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (35)
- Fakultät für Chemie und Pharmazie (11)
- Graduate School of Life Sciences (10)
- Institut für Funktionsmaterialien und Biofabrikation (6)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (6)
- Institut für Organische Chemie (2)
- Institut für Pharmazie und Lebensmittelchemie (2)
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (2)
- Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie (2)
- Klinik und Polikliniken für Zahn-, Mund- und Kieferkrankheiten (2)
Sonstige beteiligte Institutionen
In this work, a toolbox was provided to create three-component polymer conjugates with a defined architecture, designed to bear different biocomponents that can interact with larger biological systems in biomacromolecular recognition experiments. The target architecture is the attachment of two biomolecule ‘arms’ to the alpha telechelic end point of a polymer and fixating the conjugate to the gold surface of SAW and SPR sensor chips with the polymer’s other omega chain end. This specific design of a conjugate will be implemented by using a strategy to yield novel double alpha as well as omega telechelic functionalized POx and the success of all cascade reaction steps leading to the final conjugation product will be proven through affinity measurements between covalently bound mannose and ConA. All reactions were performed on a low molecular model level first and then transferred to telechelic and also side chain functionalized polymer systems.
Aim of this thesis was the development of functionalizable hydrogel coatings for melt electrowritten PCL scaffolds and of bioprintable hydrogels for biofabrication.
Hydrogel coatings of melt electrowritten scaffolds enabled to control the surface hydrophilicity, thereby allowing cell-material interaction studies of biofunctionalized scaffolds in minimal protein adhesive environments. For this purpose, a hydrophilic star- shaped crosslinkable polymer was used and the coating conditions were optimized. Moreover, newly developed photosensitive scaffolds facilitated a time and pH independent biofunctionalization.
Bioprintable hydrogels for biofabrication were based on the allyl-functionalization of gelatin (GelAGE) and modified hyaluronic acid-products, to enable hydrogel crosslinking by means of the thiol-ene click chemistry. Optimization of GelAGE hydrogel properties was achieved through an in-depth analysis of the synthesis parameters, varying Ene:SH ratios, different crosslinking molecules and photoinitiators. Homogeneity of thiol-ene crosslinked networks was compared to free radical polymerized hydrogels and the applicability of GelAGE as bioink for extrusion-based bioprinting was investigated. Purely hyaluronic acid-based bioinks were hypothesized to maintain mechanical- and rheological properties, cell viabilities and the processability, upon further decreasing the overall hydrogel polymer and thiol content.
Hydrogel coatings: Highly structured PCL scaffolds were fabricated with MEW and subjected to coatings with six-armed star-shaped crosslinkable polymers (sP(EO-stat-PO)). Crosslinking results from the aqueous induced hydrolysis of reactive isocyanate groups (NCO) of sP(EO-stat-PO) and increased the surface hydrophilicity and provided a platform for biofunctionalizations in minimal protein adhesive environments. Not only the coating procedure was optimized with respect to sP(EO-stat-PO) concentrations and coating durations, instead scaffold pre-treatments were developed, which were fundamental to enhance the final hydrophilicity to completely avoid unspecific protein adsorption on sP(EO-stat-PO) coated scaffolds. The sP(EO-stat-PO) layer thickness of around 100 nm generally allows in vitro studies not only in dependence on the scaffold biofunctionalization but also on the scaffold architecture. The hydrogel coating extent was assessed via an indirect quantification of the NCO-hydrolysis products. Knowledge of NCO-hydrolysis kinetics enabled to achieve a balance of sufficiently coated scaffolds while maintaining the presence of NCO-groups that were exploited for subsequent biofunctionalizations. However, this time and pH dependent biofunctionalization was restricted to small biomolecules. In order to overcome this limitation and to couple high molecular weight biomolecules another reaction route was developed. This route was based on the photolysis of diazirine moieties and enabled a time and pH independent scaffold biofunctionalization with streptavidin and collagen type I. The fibril formation ability of collagen was used to obtain different collagen conformations on the scaffolds and a preliminary in vitro study demonstrated the applicability to investigate cell-material interactions.
The herein developed scaffolds could be applied to gain deeper insights into the fundamentals of cellular sensing. Especially the complexity by which cells sense e.g. collagen remain to be further elucidated. Therefore, different hierarchies of collagen-like conformations could be coupled to the scaffolds, e.g. gelatin or collagen-derived peptide sequences, and the activation of DDR receptors in dependence on the complexity of the coupled substances could be determined. Due to the strong streptavidin-biotin bond, streptavidin functionalized scaffolds could be applied as a versatile platform to allow immobilization of any biotinylated molecules.
Gelatin-based bioinks: First the GelAGE products were synthesized with respect to molecular weight distributions and amino acid composition integrity. A detailed study was conducted with varying molar ratios of reactants and synthesis durations and implied that gelatin degradation was most dominant for high alkaline synthesis conditions with long reaction times. Gelatin possesses multiple functionalizable groups and the predominant functionalization of amine groups was confirmed via different model substances and analyses. Polymer network homogeneity was proven for the GelAGE system compared to free radical polymerized hydrogels with GelMA. A detailed analysis of hydrogel compositions with varying functional group ratios and UV- or Vis-light photoinitiators was executed. The UV-initiator concentration is restricted due to cytotoxicity and potential cellular DNA damages upon UV-irradiation, whereas the more cytocompatible Vis- initiator system enabled mechanical stiffness tuning over a wide range by controlling the photoinitiator concentration at constant Ene:SH ratios and polymer weight percentages. Versatility of the GelAGE bioink for different AM techniques was proved by exploiting the thermo-gelling behavior of differently degraded GelAGE products for stereolithography and extrusion-based printing. Moreover, the viability of cell-laden GelAGE constructs was demonstrated for extrusion-based bioprinting. By applying different multifunctional thiol-macromolecular crosslinkers the mechanical and rheological properties improved concurrently to the processability. Importantly, lower thiol-crosslinker concentrations were required to yield superior mechanical strengths and physico-chemical properties of the hydrogels as compared to the small bis-thiol-crosslinker. Extrusion-based bioprinting with distinct encapsulated cells underlined the need for individual optimization of cell-laden hydrogel formulations.
Not only the viability of encapsulated cells in extrusion-based bioprinted constructs should be assessed, instead other parameters such as cell morphology or production of collagen or glycosaminoglycans should be considered as these represent some of the crucial prerequisites for cartilage Tissue Engineering applications. Moreover, these studies should be expanded to the stereolithographic approach and ultimately the versatility and cytocompatibility of formulations with macromolecular crosslinkers would be of interest. Macromolecular crosslinkers allowed reducing polymer weight percentages and amounts of thiol groups and are thus expected to contribute to increased cytocompatibility, especially in combination with the more cytocompatible Vis-initiator system, which remains to be elucidated.
Hyaluronic acid-based bioinks: Different molecular weight hyaluronic acid (HA) products were synthesized to bear ene- (HAPA) or thiol-functionalities (LHASH) to enable pure HA thiol-ene crosslinked hydrogels. Depending on the molecular weight of modified HA products, polymer weight percentages and Ene:SH ratios, a wide range of mechanical stiffness was covered. However, the manageability of high molecular weight HA (HHAPA) product solutions (HHAPA + LHASH) was restricted to 5.0 wt.-% as a consequence of the high viscosity. Based on the same HA thiol component (LHASH), hybrid hydrogels of HA with GelAGE were compared to pure HA hydrogels. Although the overall polymer weight percentage of HHAPA + LHASH hydrogels was significantly lowered compared to hybrid hydrogels (GelAGE + LHASH), similar mechanical and physico-chemical properties of pure HA hydrogels were determined with maintained Ene:SH ratios. Low viscous low molecular weight HA precursor solutions (LHAPA + LHASH) prevented the applicability for extrusion-based bioprinting, whereas the non-thermoresponsive HHAPA + LHASH system could be bioprinted with only one-fourth of the polymer content of hybrid formulations. The high viscous behavior of HHAPA + LHASH solutions, lower polymer weight percentages, decreased printing pressures and consequently declined shear stress during printing, were hypothesized to contribute to high cell viabilities in extrusion-based bioprinted constructs compared to the hybrid bioink.
The low molecular weight HA precursor formulation (LHAPA + LHASH) was not applicable for extrusion-based printing, but this system has potential for other AM techniques such as stereolithography. Similar to the GelAGE system a more detailed study on the functions of encapsulated cells would be useful to further develop this system. Moreover, the initiation with the Vis-initiator should be conducted.
Diese Arbeit befasst sich mit der Untersuchung von aus Patientenisolaten gewonnenen S. aureus Kulturen und deren Biofilmbildung auf implantatähnlichen Titan-Oberflächen. Ziel war es, den zeitlichen Ablauf bakterieller periprothetischer Infektionen über einen Zeitraum von 21 Tagen zu beschreiben und besser zu verstehen. Dazu sollte überprüft werden, ob ein fluoreszenzspektrometrisch ausgewertetes LIVE/DEAD Assay eine zusätzliche Aussage zum Status der im Biofilm befindlichen Zellen liefern kann. Zudem wurde die Biofilmentwicklung anhand etablierter fluoreszenzspektrometrischer Methoden (Concanavalin-A-Markierung extrazellulärer Polymerer Substanzen, DNA-Markierung mit Hoechst 33342) untersucht. Es konnte ein reproduzierbarer Verlauf der Entwicklung des Biofilms, sowie der DNA-Menge aufgezeigt werden. Das LIVE/DEAD Assay lieferte keine signifikanten Ergebnisse in Bezug auf das Verhältnis lebender zu toter S. aureus Zellen im Biofilm.
Weiter wurde die Angreifbarkeit des frühen, am Titan adhärenten Biofilms (Alter 1-5 Tage) durch das in der Orthopädie gängig eingesetzte Antibiotikum Gentamicin untersucht. Die Wirksamkeit konnte zu jedem getesteten Zeitpunkt der ersten fünf Tage durch Anzucht von Kolonien bestätigt werden. Auch wurde die Wirksamkeit über das LIVE/DEAD Assay überprüft, jedoch konnten hier keine aussagekräftigen Daten gewonnen werden, die diese Methode zur Überprüfung der Antibiotikawirksamkeit empfehlen könnten.
In modern medicine hip and knee joint replacement are common surgical procedures. However, about 11 % of hip implants and about 7 % of knee implants need re-operations. The comparison of implant registers revealed two major indications for re-operations: aseptic loosening and implant infections, that both severely impact the patients’ health and are an economic burden for the health care system. To address these problems, a calcium hydroxide coating on titanium was investigated in this thesis. Calcium hydroxide is a well-known antibacterial agent and used with success in dentistry. The coatings were applied with electrochemically assisted deposition, a versatile tool that combines easiness of process with the ability to coat complex geometries homogeneously. The pH-gradient during coating was investigated and showed the surface confinement of the coating process. Surface pre-treatment altered the surface morphology and chemistry of the titanium substrates and was shown to affect the morphology of the calcium hydroxide coatings. The influence of the coating parameters stirring speed and current pulsing were examined in various configurations and combinations and could also affect the surface morphology. A change in surface morphology results in a changed adhesion and behavior of cells and bacteria. Thus, the parameters surface pre-treatment, stirring speed and current pulsing presented a toolset for tailoring cellular response and antibacterial properties. Microbiological tests with S. aureus and S. epidermidis were performed to test the time-dependent antibacterial activity of the calcium hydroxide coatings. A reduction of both strains could be achieved for 13 h, which makes calcium hydroxide a promising antibacterial coating. To give insight into biofilm growth, a protocol for biofilm staining was investigated on titanium disks with S. aureus and S. epidermidis. Biofilm growth could be detected after 5 days of bacterial incubation, which was much earlier than the 3 weeks that are currently assumed in medical treatment. Thus, it should be considered to treat infections as if a biofilm were present from day 5 on. The ephemeral antibacterial properties of calcium hydroxide were further enhanced and prolonged with the addition of silver and copper ions. Both ionic modifications significantly enhanced the bactericidal potential. The copper modification showed higher antibacterial effects than the silver modification and had a higher cytocompatibility which was comparable to the pure calcium hydroxide coating. Thus, copper ions are an auspicious option to enhance the antibacterial properties. Calcium hydroxide coatings presented in this thesis have promising antibacterial properties and can easily be applied to complex geometries, thus they are a step in fighting aseptic loosening and implant infections.
The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking.
In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy.
The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 %, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N’-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency.
The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 % were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 % due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 % conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy.
Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 %. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 %) and negatively charged functionalities via phosphonamide moieties (100 %) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups.
The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests.
Mesenchymal stem/stromal cells (MSCs) are a rare subpopulation of cells first identified in bone marrow with the potential to proliferate in plastic-adherent colonies and to generate de novo bone marrow stroma and its environment upon serial transplantation to heterotopic anatomical sites. Given their multipotency and self renewal competence, MSCs are prime prospective candidates for most modern musculoskeletal-tissue engineering and regenerative medicine approaches. Still, their envisioned therapeutic use is being questioned with concerns regarding their definition, characterization and integrative functions in vivo. It is well established that microenvironmental cues such as the extracellular matrix (ECM)-chemistry, the mechanical environment and local cellular and/or paracrine interactions critically control MSCs behavior. Yet, most of the scientific knowledge regarding the biology and therapeutic effect of MSCs originates from mechanistic in vitro studies where microenvironmental cues are hardly addressed. Therefore, manifestable changes in cell proliferation behavior and multilineage differentiation potential might be triggered that eventually compromise the translation of results to clinics. This thesis aims to address the complexity of MSCs interactions within the skeletal niche microenvironment in order to provide alternative methods to bypass the current MSCs in vitro culture limitations. Firstly, the influence of ECM-chemistry on MSCs behavior in vitro was explored by means of decellularized human bone models here established. Basal or osteogenic tailored cell-derived decellularized 2D matrices (dECM), proved to be suitable culture substrates for MSCs expansion by providing close-to-native cell-ECM interactions. Moreover, quantified morphological shape changes suggested a material osteo supportive potential, further functionally validated by observable spontaneous mineralization of MSCs. Aiming to identify novel intrinsic ECM regulatory features specific to the skeletal niche, 3D decellularized human trabecular bone scaffolds (dBone) were additionally developed and comprehensively characterized. Remarkably, the MSCs cultured on dBone scaffolds exhibit upregulation of genes associated with stemness as well as niche-related protein expression advocating for the conservation of the naïve MSCs phenotype. vi On the other hand, the effect of biomimetic mineralization on MSCs osteogenic lineage differentiation potential was further addressed by hydroxyapatite functionalization of type-I collagen in presence of magnesium. Mineralized scaffolds exhibited higher cell viability and a clear trend of osteogenic genes upregulation comparing with non-mineralized scaffolds. Lastly, in order to mimic the complexity of the native MSCs environment, a dynamic culture system was applied to the 3D decellularized bone constructs, previously studied in single static conditions. Mechanical stimuli generated by (1) continuous perfusion of cell culture medium at 1.7 mL/min and (2) compressive stress from 10% uniaxial load at 1 Hz, resulted in an improved cell repopulation within the scaffold and boosting of de novo ECM production. The stress-induced gene expression pattern suggested early MSCs commitment towards the osteogenic lineage mediated by integrin matrix adhesion, therefore further corroborating the recapitulation of a reliable in vitro bone niche model in dBone scaffolds. To conclude, the here developed in vitro models provide a progressive increased biomimicking complexity through which significant insights regarding MSC interactions with microenvironmental features in the skeletal niche can be obtained, thus surely paving the way for a better understanding of the role of MSCs in bone homeostasis and regeneration.
Hintergrund: Narbenhernien stellen nach Operationen ein unerwünschtes Ereignis dar. Dabei werden in der Literatur verschiedene Theorien zur Entstehung diskutiert. Sowohl beim Aortenaneurysma als auch bei der Narbenhernie soll das Kollagen ein entscheidender Faktor in der Entstehung. Historisch wird von ausgegangen das Patienten mit einem Aortenaneurysma auch ein erhöhtes Risiko für die Entwicklung einer Narbenhernie haben. Aus diesem Grund vergleichen wir die Inzidenzrate zwischen Patienten mit Aortenaneurysmen und Patienten mit einem kolorektalen Eingriff um Risikofaktoren zu identifizieren.
Methoden: Diese Studie ist eine retrospektive „Matched Control“ Kohorten-Studie. Es wurden alle Patienten eingeschlossen die sich zwischen dem 01.01.2006 und dem 31.12.2008 an der chirurgischen Universitätsklinik Würzburg an einem Aortenaneurysma oder einem kolorektalen Eingriff unterzogen haben.
Ergebnisse: In unserer Studie konnten wir eine Gesamtinzidenzrate von 17,2% nachweisen. In der Gruppe der Aortenaneurysmen bestand eine Inzidenzrate von 13,9%, in der Gruppe der Kolorektalen Eingriffe von 25,9%. Es bestand kein signifikanter Unterschied zwischen den beiden Gruppen bezüglich der Inzidenzrate von Narbenhernien
Schlussfolgerung: Es besteht kein signifikanter Unterschied zwischen den beiden Vergleichsgruppen. In der Gruppe der Aortenaneurysmen war die Inzidenzrate sogar geringer.
Aufgrund der sich umkehrenden Alterspyramide in Deutschland leiden bereits jetzt immer mehr Menschen an Gelenkknorpelschäden. Doch nicht nur das Alter, sondern auch Unfälle und Sportverletzungen und Übergewicht können zu irreversiblen Knorpeldefekten führen. Obwohl es diverse Behandlungsmöglichkeiten gibt, können die bisherige Methoden nicht als dauerhafte Heilung betrachtet werden. Im Rahmen des internationalen Forschungsprojektes BIO-CHIP sollte eine vielsprechende Behandlungsmethode mit neuartigen Arzneimitteln untersucht werden.
Als Ausgangsmaterial des Arzneimittels, ein hergestelltes Knorpelimplantat, dienen patienteneigene Knorpelzellen aus der Nase. Diese werden isoliert, vermehrt und letztlich auf einer Matrix zu einem Knorpelimplantat kultiviert. Wesentliche Voraussetzung für die Implantatfreigabe stellt neben toxikologischen und biologischen Unbedenklichkeitstests die Beurteilung der Viabilität dar. Diese wurde bisher anhand von Histologieschnitten von der Pathologie durchgeführt.
Ziel der vorliegenden Arbeit war die Entwicklung und Validierung eines standardisierten und objektiven Viabilitätstests für die Chondrozyten innerhalb der Knorpelmatrix. Hierfür wurde die LDH als Marker für irreversibel geschädigte Zellen verwendet. Die LDH Konzentration konnte mit dem CyQuant LDH-Assay durch die Messung der Absorption gemessen werden. Es konnte nachgewiesen werden, dass LDH die erforderliche Stabilität und Nachweisbarkeit im Medium besitzt. Mithilfe der Lyse, analog zum Herstellungsprozess, gezüchteter Mini-Knorpelimplantate, konnten die maximal erreichbaren LDH Konzentrationen ermittelt werden. Mithilfe dieser Konzentrationen wurde eine Eichkurve generiert. Diese dient als Beurteilung der Viabilität zukünftig gemessener Absorptionen des Überstandmediums.
Das entwickelte Verfahren erfordert keine invasiven Eingriffe am Implantat und zeichnet sich durch eine einfache Durchführung aus, da nur der Überstand gemessen werden muss. Die durchgeführte Validierung der Methode bescheinigte eine hohe Robustheit, Linearität, Genauigkeit und Präzision.
Entwicklung einer biofunktionalen Beschichtung für mit Silber dotierte Titandioxid-Nanopartikel
(2020)
Ziel dieser Arbeit war es, eine erfolgreiche Beschichtung der verschiedenen TiO2 Nanopartikel mit aufsteigendem Silberanteil herzustellen, um eine ausgeprägte Stabilisierung und Biokompatibilität der Partikel zu erreichen. Anschließend wurde ihre Wirkung gegenüber gesunden Zellen und Tumorzellen anhand von Zellversuchen untersucht.
Zunächst mussten die TiO2 Aggregate nach ihrer Redispergierung in Wasser, Toluol oder Tris Base gespalten werden, damit anschließend eine kontrollierte Beschichtung einzelner Nanopartikel durchgeführt werden konnte. Der Einfluss von Ultraschall in Form einer zweiminütigen Ultraschalltipbehandlung lieferte hierbei die niedrigsten Partikelgrößen in der DLS-Messung.
Die Beschichtungen wurden mit APTES, Dopamin und PEG-SH unter Einfluss von unterschiedlichen Ultraschalltipzeiten, Konzentrationen, Temperaturen, pH-Werten, Salzen sowie verschiedenen Magnetrührtechniken und Waschprozessen entwickelt. Durch die Charakterisierungsmethoden via dynamischer Lichtstreuung, Zetapotentialmessung, Infrarotspektroskopie, REM und STEM wurde jede Beschichtung analysiert und auf diese Weise ihre optimale Herstellungsmethode erarbeitet.
Schlussendlich wurde der Einfluss unbeschichteter sowie mit APTES, PDA und PEG-SH beschichteter TiO2 Nanopartikel mit steigendem Silberanteil anhand gesunder Zellen und Tumorzellen in vitro untersucht. Die Zellen wurden für 24 h mit den Partikeln inkubiert und anschließend mittels Durchflusszytometrie charakterisiert. Generell wurde nur eine geringfügige Auswirkung der Partikel auf die Zellen beobachtet. Die in der Literatur beworbene Aussage, dass silberdotierte TiO2 in der Lage sind, entartete Zellen zu töten, während gesunde Zellen ausgespart werden, konnte nicht bestätigt werden. Dennoch besaßen einige Faktoren einen Einfluss auf die Vitalität und Zellzahl. So spielte der steigende Silberanteil bei den Zellen eine Rolle, die einen Effekt auf die TiO2 Nanopartikel zeigten. Mit steigendem Ag-Anteil sanken Zellzahl und Vitalität stärker. Auch eine ansteigende Konzentration der beschichteten Partikel wirkte sich positiv auf das Absinken der Zellzahl aus. Besonders die adhärent wachsende Tumorzelllinie Panc02 zeigte sich sensibel gegenüber den beschichteten und unbeschichteten Partikeln. Die Beschichtung, welche die größte Auswirkung auf die Zellzahl- und Vitalitätsminderung der Zellen hatte, war eindeutig die PDA-Beschichtung.
Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm ‘replace with alike’, adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care.
With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies.
For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3).
Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4).
Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5).
Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo.
Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6).
In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7).
With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.