## 70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

### Refine

#### Has Fulltext

- yes (44)

#### Is part of the Bibliography

- yes (44)

#### Year of publication

#### Document Type

- Doctoral Thesis (43)
- Preprint (1)

#### Keywords

- Topologischer Isolator (13)
- Quecksilbertellurid (6)
- Elektronischer Transport (4)
- Heterostruktur (4)
- HgTe (4)
- Molekularstrahlepitaxie (4)
- Quantenpunkt (4)
- Festkörperphysik (3)
- Galliumarsenid (3)
- Organischer Halbleiter (3)

#### Institute

#### Sonstige beteiligte Institutionen

- Center for Nanosystems Chemistry (CNC), Universität Würzburg (1)
- Institute of Physics and Center for Nanotechnology, University of Münster (1)
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München (1)
- NanoOptics & Biophotonics Group, Experimental Physics 5, Universität Würzburg (1)

#### EU-Project number / Contract (GA) number

- 614623 (1)

After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ – a new class of quantum materials characterized by their unique surface electronic properties – the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary.
V- and Cr-doped (Bi,Sb)$_2$Te$_3$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)$_2$Te$_3$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the $d$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te $5p$ states for the ferromagnetism in (Bi, Sb)$_2$Te$_3$ and favor magnetic coupling mechanisms involving $pd$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the $3d$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity $3d$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a $pd$-exchange interaction scenario. Our findings reveal important clues to designing higher $T_{\text{C}}$ MTIs.
Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi$_2$Te$_3$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi$_2$Te$_3$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties.
The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi$_6$Te$_{10}$, where we have uncovered robust ferromagnetism with $T_{\text{C}} \approx 12$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi$_6$Te$_{10}$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the $d^5$ configuration to the ground state, resulting in a $d$-shell electron occupation $n_d = 5.31$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA$+U$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties.
We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future.

Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK.
The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200–270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Schönhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy.

Quantum point contacts (QPCs) are one-dimensional constrictions in an otherwise extended two-dimensional electron or hole system. Since their first realization in GaAs based two-dimensional electron gases, QPCs have become basic building blocks of mesoscopic physics and are used in manifold experimental contexts. A so far unrealized goal however is the implementation of QPCs in the new material class of two-dimensional topological insulators, which host the emergence of the so-called quantum spin Hall (QSH) effect. The latter is characterized by the formation of conducting one-dimensional spin-polarized states at the device edges, while the bulk is insulating. Consequently, an implemented QPC technology can be utilized to bring the QSH edge channels in close spatial proximity, thus for example enabling the study of interaction effects between the edge states. The thesis at hand describes the technological realization as well as the subsequent experimental characterization and analysis of QPCs in a QSH system for the first time.
After an introduction is given in Chapter 1, the subsequent Chapter 2 starts with discussing the peculiar band structure of HgTe. The emergence of the QSH phase for HgTe quantum wells with an inverted band structure is explained. For the band inversion to occur, the quantum wells have to exhibit a well thickness d_QW above a critical value (d_QW > d_c = 6.3 nm). Subsequently, the concept of QPCs is explicated and the corresponding transport behaviour is analytically described. Following the discussion of relevant constraints when realizing a QPC technology in a QSH system, a newly developed lithography process utilizing a multi-step wet etching technique for fabricating QPC devices based on HgTe quantum wells is presented. Transport measurements of exemplary devices show the expected conductance quantization in steps of ΔG ≈ 2e^2/h within the conduction band for a topological as well as for a trivial (d_QW < d_c) QPC. For the topological case, the residual conductance within the bulk band gap saturates at G_QSH ≈ 2e^2/h due to presence of the QSH state, while it drops to G ≈ 0 for the trivial device. Moreover, bias voltage dependent measurements of the differential conductance of an inverted sample provide explicit proof of the unperturbed coexistence of topological and trivial transport modes.
In a next step, Chapter 3 describes the emergence of a QSH interferometer state in narrow QPC devices with a quantum well thickness of d_QW = 7 nm. Presented band structure calculations reveal that the spatial extension of the QSH edge states depends on the position of the Fermi energy within the bulk band gap. As a consequence, reservoir electrons with randomized spin couple to both edge channels with the same probability under certain conditions, thus causing the formation of a QSH ring. A straightforward model capturing and specifying the occurrence of such a QSH interferometer is provided as well as substantiated by two experimental plausibility checks. After relevant quantum phases are theoretically introduced, the discussion of the obtained data reveals the accumulation of an Aharonov-Bohm phase, of a dynamical Aharonov-Casher phase as well as of a spin-orbit Berry phase of π in appropriate QPC devices. These results are consistent with analytic model considerations.
The last part of this thesis, Chapter 4, covers the observation of an unexpected conductance pattern for QPC samples fabricated from quantum wells with d_QW = 10.5 nm. In these devices, an anomalous plateau at G ≈ e^2/h = 0.5 x G_QSH emerges in addition to the QSH phase entailed residual conductance of G_QSH ≈ 2e^2/h. This so-called 0.5 anomaly occurs only for a specific interval of QPC width values, while it starts to get lost for too large sample widths. Furthermore, presented temperature and bias voltage dependent measurements insinuate that the emergence of the 0.5 anomaly is related to a gapped topological state. Additional characterization of this peculiar transport regime is provided by the realization of a novel device concept, which integrates a QPC within a standard Hall bar geometry. The results of the experimental analysis of such a sample link the occurrence of the 0.5 anomaly to a backscattered QSH channel. Thus, following a single particle perspective argumentation, it is reasoned that only one edge channel is transmitted in the context of the 0.5 anomaly. Two theoretic models possibly explaining the emergence of the 0.5 anomaly -- based on electron-electron interactions -- are discussed.
To conclude, the implementation of a working QPC technology in a QSH system represents a paramount development in the context of researching two-dimensional topological insulators and enables a multitude of future experiments. QPC devices realized in a QSH system are for example envisaged to allow for the detection of Majorana fermions and parafermions. Furthermore, the reported formation of a QSH interferometer state in appropriate QPC devices is of high interest. The observed dynamical Aharonov-Casher phase in the QSH regime enables a controllable modulation of the topological conductance, thus providing the conceptual basis for a topological transistor. Moreover, due to the resilience of geometric phases against dephasing, the presence of a spin-orbit Berry phase of π represents a promising perspective with regard to possible quantum computation concepts. Besides that, the transmission of only one QSH edge channel due to the emergence of the 0.5 anomaly is equivalent to 100 % spin polarization, which is an essential ingredient for realizing spintronic applications. Hence, the thesis at hand covers the experimental detection of three effects of fundamental importance in the context of developing new generations of logic devices -- based on QPCs fabricated from topological HgTe quantum wells.

In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows:
1.) Identification of VB-:
In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified.
2.) Coherent Control of VB-:
A coherent control is required for the defect to be utilized for quantum applications, which

Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind.

Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively.
KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface.
There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) %.

The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented.
At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed.
In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices.
Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection.
Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators.

Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird.

Over the last two decades, accompanied by their prediction and ensuing realization, topological non-trivial materials like topological insulators, Dirac semimetals, and Weyl semimetals have been in the focus of mesoscopic condensed matter research. While hosting a plethora of intriguing physical phenomena all on their own, even more fascinating features emerge when superconducting order is included. Their intrinsically pronounced spin-orbit coupling leads to peculiar, time-reversal symmetry protected surface states, unconventional superconductivity, and even to the emergence of exotic bound states in appropriate setups.
This Thesis explores various junctions built from - or incorporating - topological materials in contact with superconducting order, placing particular emphasis on the transport properties and the proximity effect.
We begin with the analysis of Josephson junctions where planar samples of mercury telluride are sandwiched between conventional superconducting contacts. The surprising observation of pronounced excess currents in experiments, which can be well described by the Blonder-Tinkham-Klapwijk theory, has long been an ambiguous issue in this field, since the necessary presumptions are seemingly not met. We propose a resolution to this predicament by demonstrating that the interface properties in hybrid nanostructures of distinctly different materials yet corroborate these assumptions and explain the outcome. An experimental realization is feasible by gating the contacts. We then proceed with NSN junctions based on time-reversal symmetry broken Weyl semimetals and including superconducting order. Due to the anisotropy of the electron band structure, both the transport properties as well as the proximity effect depend substantially on the orientation of the interfaces between the materials. Moreover, an imbalance can be induced in the electron population between Weyl nodes of opposite chirality, resulting in a non-vanishing spin polarization of the Cooper pairs leaking into the normal contacts. We show that such a system features a tunable dipole character with possible applications in spintronics. Finally, we consider partially superconducting surface states of three-dimensional topological insulators. Tuning such a system into the so-called bipolar setup, this results in the formation of equal-spin Cooper pairs inside the superconductor, while simultaneously acting as a filter for non-local singlet pairing. The creation and manipulation of these spin-polarized Cooper pairs can be achieved by mere electronic switching processes and in the absence of any magnetic order, rendering such a nanostructure an interesting system for superconducting spintronics. The inherent spin-orbit coupling of the surface state is crucial for this observation, as is the bipolar setup which strongly promotes non-local Andreev processes.

We employ the AdS/CFT correspondence and hydrodynamics to analyze the transport properties of \(2+1\) dimensional electron fluids. In this way, we use theoretical methods from both condensed matter and high-energy physics to derive tangible predictions that are directly verifiable in experiment.
The first research topic we consider is strongly-coupled electron fluids. Motivated by early results by Gurzhi on the transport properties of weakly coupled fluids, we consider whether similar properties are manifest in strongly coupled fluids. More specifically, we focus on the hydrodynamic tail of the Gurzhi effect: A decrease in fluid resistance with increasing temperature due to the formation of a Poiseuille flow of electrons in the sample. We show that the hydrodynamic tail of the Gurzhi effect is also realized in strongly coupled and fully relativistic fluids, but with modified quantitative features. Namely, strongly-coupled fluids always exhibit a smaller resistance than weakly coupled ones and are, thus, far more efficient conductors. We also suggest that the coupling dependence of the resistance can be used to measure the coupling strength of the fluid. In view of these measurements, we provide analytical results for the resistance as a function of the shear viscosity over entropy density \(\eta/s\) of the fluid. \(\eta/s\) is itself a known function of the coupling strength in the weak and infinite coupling limits.
In further analysis for strongly-coupled fluids, we propose a novel strongly coupled Dirac material based on a kagome lattice, Scandium-substituted Herbertsmithite (ScHb). The large coupling strength of this material, as well as its Dirac nature, provides us with theoretical and experimental access to non-perturbative relativistic and quantum critical physics. A highly suitable method for analyzing such a material's transport properties is the AdS/CFT correspondence. Concretely, using AdS/CFT we derive an estimate for ScHb's \(\eta/s\) and show that it takes a value much smaller than that observed in weakly coupled materials. In turn, the smallness of \(\eta/s\) implies that ScHb's Reynolds number, \(Re\), is large. In fact, \(Re\) is large enough for turbulence, the most prevalent feature of fluids in nature, to make its appearance for the first time in electronic fluids.
Switching gears, we proceed to the second research topic considered in this thesis: Weakly coupled parity-breaking electron fluids. More precisely, we analyze the quantitative and qualitative changes to the classical Hall effect, for electrons propagating hydrodynamically in a lead. Apart from the Lorentz force, a parity-breaking fluid's motion is also impacted by the Hall-viscous force; the shear-stress force induced by the Hall-viscosity. We show that the interplay of these two forces leads to a hydrodynamic Hall voltage with non-linear dependence on the magnetic field. More importantly, the Lorentz and Hall-viscous forces become equal at a non-vanishing magnetic field, leading to a trivial hydrodynamic Hall voltage. Moreover, for small magnetic fields we provide analytic results for the dependence of the hydrodynamic Hall voltage on all experimentally-tuned parameters of our simulations, such as temperature and density. These dependences, along with the zero of the hydrodynamic Hall voltage, are distinct features of hydrodynamic transport and can be used to verify our predictions in experiments.
Last but not least, we consider how a distinctly electronic property, spin, can be included into the hydrodynamic framework. In particular, we construct an effective action for non-dissipative spin hydrodynamics up to first order in a suitably defined derivative expansion. We also show that interesting spin-transport effects appear at second order in the derivative expansion. Namely, we show that the fluid's rotation polarizes its spin. This is the hydrodynamic manifestation of the Barnett effect and provides us with an example of hydrodynamic spintronics.
To conclude this thesis, we discuss several possible extensions of our research, as well as proposals for research in related directions.