910 Geografie, Reisen
Refine
Has Fulltext
- yes (31)
Year of publication
Document Type
- Journal article (13)
- Doctoral Thesis (11)
- Book (6)
- Preprint (1)
Keywords
- Nachhaltigkeit (4)
- Einzelhandel (3)
- Klima (2)
- Klimaänderung (2)
- Nationalpark (2)
- RapidEye (2)
- Remote sensing (2)
- TerraSAR-X (2)
- Tourismus (2)
- Verbraucherverhalten (2)
Institute
Schriftenreihe
While the place of birth plays a crucial role for women’s birth experiences, the interest in out-of-hospital births has increased during the Covid-19 pandemic. Related to this, various international policies recommend enabling women to choose where to give birth. We aimed to analyze Swiss women’s choice between birth hospitals and birth centers. Employing spatial accessibility analysis, we incorporated four data types: highly disaggregated population data, administrative data, street network data, addresses of birth hospitals and birth centers. 99.8% of Swiss women of childbearing age were included in the analysis (N = 1.896.669). We modelled car travel times from a woman’s residence to the nearest birth hospital and birth center. If both birth settings were available within 30 minutes, a woman was considered to have a true choice. Only 58.2% of women had a true choice. This proportion varied considerably across Swiss federal states. The main barrier to a true choice was limited accessibility of birth centers. Median travel time to birth hospitals was 9.8 (M = 12.5), to birth centers 23.9 minutes (M = 28.5). Swiss women are insufficiently empowered to exercise their reproductive autonomy as their choice of place of birth is significantly limited by geographical constraints. It is an ethical and medical imperative to provide women with a true choice. We provide high-resolution insights into the accessibility of birth settings and strong arguments to (re-)examine the need for further birth centers (and birth hospitals) in specific geographical areas. Policy-makers are obligated to improve the accessibility of birth centers to advance women’s autonomy and enhance maternal health outcomes after childbirth. The Covid-19 pandemic offers an opportunity to shift policy.
This study investigates the surroundings of Munigua (municipium Flavium Muniguense), a small Roman town in the ancient province of Hispania Baetica (SW Spain). The city's economy was based primarily on copper and iron mining, which brought financial prosperity to its citizens. Local production of agricultural goods is thought to have been of little importance, as the regional soil conditions do not seem to be suitable for extensive agriculture.
To evaluate the recent soil agro-potential and to find evidence for prehistoric and historic land use in the surroundings of Munigua, we applied a pedo-geomorphological approach based on the physico-chemical analysis of 14 representative soil and sediment exposures. Selected samples were analyzed for bulk chemistry, texture and phytoliths. The chronostratigraphy of the sequences was based on radiocarbon dating of charcoal samples. The site evaluation of the present-day soil agro-potential was carried out according to standard procedures and included evaluation of potential rootability, available water-storage capacity and nutrient budget within the uppermost 1 m.
The results show that moderate to very good soil agro-potential prevails in the granitic and floodplain areas surrounding Munigua. Clearly, recent soil agro-potential in these areas allows the production of basic agricultural goods, and similar limited agricultural use should also have been possible in ancient times. In contrast, weak to very weak present-day soil agro-potential prevails in the metamorphic landscape due to the occurrence of shallow and sandy to stony soils.
In addition, the study provides pedo-geomorphological evidence for prehistoric and historic land use in pre-Roman, Roman and post-Roman times. Catenary soil mapping in the vicinity of a Roman house complex reveals multi-layered colluvial deposits. They document phases of hillslope erosion mainly triggered by human land use between 4063 ± 82 and 3796 ± 76 cal BP, around 2601 ± 115 cal BP, and between 1424 ± 96 and 421 ± 88 cal BP. Moreover, geochemical and phytolith analyses of a Roman hortic Anthrosol indicate the local cultivation of agricultural products that contributed to the food supply of Munigua.
Overall, the evidence of Roman agricultural use in the Munigua area indicates that the city's economy was by no means focused solely on mining. The production of basic agricultural products was also part of Munigua's economic portfolio. Our geoarcheological study thus supports the archeological concept of economically diversified Roman cities in the province of Baetica and in Hispania.
The Seville Strategy spurred a signifi cant paradigm shift in UNESCO’s MAB Programme, re-conceptualising the research programme as a modern tool for the dual mandate of nature conservation and sustainable development. However, many biosphere reserves failed to comply with the new regulations and in 2013 the ‘Exit Strategy’ was announced to improve the quality of the global network.
This study presents a global assessment of the implementation of the quality enhancement strategies, highlighting signifi cant differences worldwide through 20 country-specifi c case studies. It concludes that the strategies have been fundamental in improving the credibility and coherence of the MAB Programme. Challenges in the implementation were not unique to individual countries but were common to all Member States with pre-Seville sites, and in many states the process has led to a rejuvenation of national biosphere reserve networks.
Snow cover (SC) and timing of snowmelt are key regulators of a wide range of Arctic ecosystem functions. Both are strongly influenced by the amplified Arctic warming and essential variables to understand environmental changes and their dynamics. This study evaluates the potential of Sentinel-1 (S-1) synthetic aperture radar (SAR) time series for monitoring SC depletion and snowmelt with high spatiotemporal resolution to capture their understudied small-scale heterogeneity. We use 97 dual-polarized S-1 SAR images acquired over northeastern Greenland and 94 over southwestern Greenland in the interferometric wide swath mode from the years 2017 and 2018. Comparison of S-1 intensity against SC fraction maps derived from orthorectified terrestrial time-lapse imagery indicates that SAR backscatter can increase before a decrease in SC fraction is observed. Hence, the increase in backscatter is related to changing snowpack properties during the runoff phase as well as decreasing SC fraction. We here present a novel empirical approach based on the temporal evolution of the SAR signal to identify start of runoff (SOR), end of snow cover (EOS) and SC extent for each S-1 observation date during melt using backscatter thresholds as well as the derivative. Comparison of SC with orthorectified time-lapse imagery indicates that HV polarization outperforms HH when using a global threshold. The derivative avoids manual selection of thresholds and adapts to different environmental settings and seasonal conditions. With a global configuration (threshold: 4 dB; polarization: HV) as well as with the derivative, the overall accuracy of SC maps was in all cases above 75 % and in more than half of cases above 90 %. Based on the physical principle of SAR backscatter during snowmelt, our approach is expected to work well in other low-vegetation areas and, hence, could support large-scale SC monitoring at high spatiotemporal resolution (20 m, 6 d) with high accuracy.
Durch die globale Organisation von Lebensmittelwarenketten steht Konsument*innen heute ein vielfältiges, ganzjährig nahezu gleichbleibendes Angebot an frischem Obst und Gemüse im Lebensmitteleinzelhandel zur Verfügung. Damit einher geht eine erhöhte Komplexität beim Lebensmitteleinkauf und ein verändertes Wissen von Konsument*innen, über die Waren: Das eigene Erfahren der Lebensmittelproduktion ist im Alltag heute nicht mehr möglich. Statt praktischem Wissen gewinnt damit explizites und objektiviertes Wissen über die Waren, z.B. in Form von Siegeln an Bedeutung. Viele Produkt- und Produktionseigenschaften entziehen sich zudem der Kenntnis der Konsument*innen, während gleichzeitig das Bewusstsein für Fragen sozialer und ökologischer Nachhaltigkeit steigt.
Die vorliegende Studie geht vor diesem Hintergrund am Beispiel des Einkaufs von frischem Obst und Gemüse der Frage nach, welche Bedeutung die Herkunftsangabe als Hinweis auf die Geographien der Waren für die Bewertung von frischem Obst und Gemüse hat und welches Wissen Konsument*innen über Waren und deren Biographien haben. Es wird zudem aufgezeigt, welche Rolle Nichtwissen beim Lebensmittelkonsum spielt.
Die Studie liefert Erkenntnisse für die bislang im deutschsprachigen Raum noch vergleichsweise wenig repräsentierte Konsumgeographie und macht Konzepte aus der Wissens- und Organisationssoziologie für die wirtschaftsgeographische Forschung fruchtbar. Aus einer Praxisperspektive bietet sie Anschlusspunkte für Fragen des nachhaltigen Konsums sowie des Verbraucherschutzes.
Digital platforms, understood as multi-sided matchmakers, have amassed huge power, reimagining the role of consumers, producers, and even ownership. They increasingly dictate the way the economy and urban life is organized. Yet, despite their influential and far-reaching role in shaping our economic as well as sociocultural world, our understanding of their embeddedness, namely how their activities are embedded in systems of social and societal relationships and how they conceptualize their main functions and actions in relation to their wider setting, remains rudimentary. Consequently, the purpose of this frontier paper is threefold. Firstly, it reveals the need to discuss and evaluate (dis-)embedding processes in platform urbanism in order to understand the underlying dynamics of platform power and urban transformation. Secondly, it aims to reveal the main reasons in regard to the difficulties in pinpointing digital platforms embeddedness. Thirdly, it seeks to propose future research unravelling the (dis-)embeddedness of the platform economy.
This paper argues for three main reasons namely unawareness, unaccountability and non-transparency of digital platforms that drive the lack of embeddedness and reaffirms platform power. This is mainly based on the configuration of new commodities, platforms’ strategic avoidance of labour protections and other regulatory frameworks as well as platforms’ secrecy in which they operate. This frontier paper argues that transferring the concept of embeddedness to the platform economy might serve as a valuable tool to understand and pinpoint essential dynamics and relationships at play, therefore proposing embeddedness as a basis for future research on the platform economy. It strongly argues that a more detailed understanding is urgently needed, in order to be able to understand, accompany and actively influence the development of the platform economy in regulatory terms.
Purpose
Rapid accessibility of (intensive) medical care can make the difference between life and death. Initial care in case of strokes is highly dependent on the location of the patient and the traffic situation for supply vehicles. In this methodologically oriented paper we want to determine the inequivalence of the risks in this respect.
Methods
Using GIS we calculate the driving time between Stroke Units in the district of Münster, Germany for the population distribution at day- & nighttime. Eight different speed scenarios are considered. In order to gain the highest possible spatial resolution, we disaggregate reported population counts from administrative units with respect to a variety of factors onto building level.
Results
The overall accessibility of urban areas is better than in less urban districts using the base scenario. In that scenario 6.5% of the population at daytime and 6.8% at nighttime cannot be reached within a 30-min limit for the first care. Assuming a worse traffic situation, which is realistic at daytime, 18.1% of the population fail the proposed limit.
Conclusions
In general, we reveal inequivalence of the risks in case of a stroke depending on locations and times of the day. The ability to drive at high average speeds is a crucial factor in emergency care. Further important factors are the different population distribution at day and night and the locations of health care facilities. With the increasing centralization of hospital locations, rural residents in particular will face a worse accessibility situation.
Remote sensing time series is the collection or acquisition of remote sensing data in a
fixed equally spaced time period over a particular area or for the whole world. Near
daily high spatial resolution data is very much needed for remote sensing applications
such as agriculture monitoring, phenology change detection, environmental
monitoring and so on. Remote sensing applications can produce better and accurate
results if they are provided with dense and accurate time series of data. The current
remote sensing satellite architecture is still not capable of providing near daily
or daily high spatial resolution images to fulfill the needs of the above mentioned
remote sensing applications. Limitations in sensors, high development, operational
costs of satellites and presence of clouds blocking the area of observation are some
of the reasons that makes near daily or daily high spatial resolution optical remote
sensing data highly challenging to achieve. With developments in the optical sensor
systems and well planned remote sensing satellite constellations, this condition
can be improved but it comes at a cost. Even then the issue will not be completely
resolved and thus the growing need for high temporal and high spatial resolution
data cannot be fulfilled entirely. Because the data collection process relies on satellites
which are physical system, these can fail unpredictably due to various reasons
and cause a complete loss of observation for a given period of time making a gap
in the time series. Moreover, to observe the long term trend in phenology change
due to rapidly changing environmental conditions, the remote sensing data from
the present is not just sufficient, the data from the past is also important. A better
alternative solution for this issue can be the generation of remote sensing time series
by fusing data from multiple remote sensing satellite which has different spatial and
temporal resolutions. This approach will be effective and efficient. In this method
a high temporal low spatial resolution image from a satellite such as Sentinel-2 can
be fused with a low temporal and high spatial resolution image from a satellite such
as the Sentinel-3 to generate a synthetic high temporal high spatial resolution data.
Remote sensing time series generation by data fusion methods can be applied to
the satellite images captured currently as well as the images captured by the satellites
in the past. This will provide the much needed high temporal and high spatial
resolution images for remote sensing applications. This approach with its simplistic
nature is cost effective and provides the researchers the means to generate the
data needed for their application on their own from the limited source of data available
to them. An efficient data fusion approach in combination with a well planned
satellite constellation can offer a solution which will ensure near daily time series of
remote sensing data with out any gap. The aim of this research work is to develop
an efficient data fusion approaches to achieve dense remote sensing time series.
Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties–sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen–in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models–multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)–were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources.