910 Geografie, Reisen
Refine
Has Fulltext
- yes (46)
Year of publication
Document Type
- Journal article (27)
- Doctoral Thesis (12)
- Book (6)
- Preprint (1)
Keywords
- Germany (4)
- Nachhaltigkeit (4)
- Einzelhandel (3)
- time series (3)
- Central Asia (2)
- Deutschland (2)
- Fernerkundung (2)
- Geografie (2)
- Klima (2)
- Klimaänderung (2)
Institute
Schriftenreihe
Sonstige beteiligte Institutionen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Deutsches Fernerkundungsdatenzengrum (DFD) (1)
- Geographisches Institut (Humboldt Universität zu Berlin) (1)
- Hochschule für angewandte Wissenschaften München, Fakultät für Tourismus (1)
- Sonderforschungsbereich Re-Figuration von Räumen (Technische Universität Berlin) (1)
This study explores the potential of Sentinel-1 Synthetic Aperture Radar (SAR) to identify phenological phases of wheat, sugar beet, and canola. Breakpoint and extreme value analyses were applied to a dense time series of interferometric (InSAR) and polarimetric (PolSAR) features recorded during the growing season of 2017 at the JECAM site DEMMIN (Germany). The analyses of breakpoints and extrema allowed for the distinction of vegetative and reproductive stages for wheat and canola. Certain phenological stages, measured in situ using the BBCH-scale, such as leaf development and rosette growth of sugar beet or stem elongation and ripening of wheat, were detectable by a combination of InSAR coherence, polarimetric Alpha and Entropy, and backscatter (VV/VH). Except for some fringe cases, the temporal difference between in situ observations and breakpoints or extrema ranged from zero to five days. Backscatter produced the signature that generated the most breakpoints and extrema. However, certain micro stadia, such as leaf development of BBCH 10 of sugar beet or flowering BBCH 69 of wheat, were only identifiable by the InSAR coherence and Alpha. Hence, it is concluded that combining PolSAR and InSAR features increases the number of detectable phenological events in the phenological cycles of crops.
Air pollution is associated with morbidity and mortality worldwide. We investigated the impact of improved air quality during the economic lockdown during the SARS-Cov2 pandemic on emergency room (ER) admissions in Germany. Weekly aggregated clinical data from 33 hospitals were collected in 2019 and 2020. Hourly concentrations of nitrogen and sulfur dioxide (NO2, SO2), carbon and nitrogen monoxide (CO, NO), ozone (O3) and particulate matter (PM10, PM2.5) measured by ground stations and meteorological data (ERA5) were selected from a 30 km radius around the corresponding ED. Mobility was assessed using aggregated cell phone data. A linear stepwise multiple regression model was used to predict ER admissions. The average weekly emergency numbers vary from 200 to over 1600 cases (total n = 2,216,217). The mean maximum decrease in caseload was 5 standard deviations. With the enforcement of the shutdown in March, the mobility index dropped by almost 40%. Of all air pollutants, NO2 has the strongest correlation with ER visits when averaged across all departments. Using a linear stepwise multiple regression model, 63% of the variation in ER visits is explained by the mobility index, but still 6% of the variation is explained by air quality and climate change.
Nearly a quarter of the Alpine area is covered by a dense network of large protected areas (LPAs) of the four categories national park(NP), biosphere reserve (BR), nature park and world natural heritage site (WNHS). From the time of early industrialization, the Alpine area has undergone a mixed and increasingly polarized demographic development between the poles of immigration and emigration. This article investigates the possible mutual impact of population development and the existence of LPAs. The research design includes a quantitative survey of all Alpine LPAs in terms of their population development and the structure of immigration in the first decade of the 21st century. This will be linked with qualitative expert interviews in four selected NPs. The overall results allow an interpretation of the statistical
correlations between type of LPA and migration.
Grünflächen stellen einen der wichtigsten Umwelteinflüsse in der Wohnumwelt der Menschen dar. Einerseits wirken sie sich positiv auf die physische und mentale Gesundheit der Menschen aus, andererseits können Grünflächen auch negative Wirkungen anderer Faktoren abmildern, wie beispielsweise die im Laufe des Klimawandels zunehmenden Hitzeereignisse. Dennoch sind Grünflächen nicht für die gesamte Bevölkerung gleichermaßen zugänglich. Bestehende Forschung im Kontext der Umweltgerechtigkeit (UG) konnte bereits aufzeigen, dass unterschiedliche sozio-ökonomische und demographische Gruppen der deutschen Bevölkerung unterschiedlichen Zugriff auf Grünflächen haben. An bestehenden Analysen von Umwelteinflüssen im Kontext der UG wird kritisiert, dass die Auswertung geographischer Daten häufig auf zu stark aggregiertem Level geschieht, wodurch lokal spezifische Expositionen nicht mehr genau abgebildet werden. Dies trifft insbesondere für großflächig angelegte Studien zu. So werden wichtige räumliche Informationen verloren. Doch moderne Erdbeobachtungs- und Geodaten sind so detailliert wie nie und Methoden des maschinellen Lernens ermöglichen die effiziente Verarbeitung zur Ableitung höherwertiger Informationen.
Das übergeordnete Ziel dieser Arbeit besteht darin, am Beispiel von Grünflächen in Deutschland methodische Schritte der systematischen Umwandlung umfassender Geodaten in relevante Geoinformationen für die großflächige und hochaufgelöste Analyse von Umwelteigenschaften aufzuzeigen und durchzuführen. An der Schnittstelle der Disziplinen Fernerkundung, Geoinformatik, Sozialgeographie und Umweltgerechtigkeitsforschung sollen Potenziale moderner Methoden für die Verbesserung der räumlichen und semantischen Auflösung von Geoinformationen erforscht werden. Hierfür werden Methoden des maschinellen Lernens eingesetzt, um Landbedeckung und -nutzung auf nationaler Ebene zu erfassen. Diese Entwicklungen sollen dazu beitragen bestehende Datenlücken zu schließen und Aufschluss über die Verteilungsgerechtigkeit von Grünflächen zu bieten.
Diese Dissertation gliedert sich in drei konzeptionelle Teilschritte. Im ersten Studienteil werden Erdbeobachtungsdaten der Sentinel-2 Satelliten zur deutschlandweiten Klassifikation von Landbedeckungsinformationen verwendet. In Kombination mit punktuellen Referenzdaten der europaweiten Erfassung für Landbedeckungs- und Landnutzungsinformationen des Land Use and Coverage Area Frame Survey (LUCAS) wird ein maschinelles Lernverfahren trainiert. In diesem Kontext werden verschiedene Vorverarbeitungsschritte der LUCAS-Daten und deren Einfluss auf die Klassifikationsgenauigkeit beleuchtet. Das Klassifikationsverfahren ist in der Lage Landbedeckungsinformationen auch in komplexen urbanen Gebieten mit hoher Genauigkeit abzuleiten. Ein Ergebnis des Studienteils ist eine deutschlandweite Landbedeckungsklassifikation mit einer Gesamtgenauigkeit von 93,07 %, welche im weiteren Verlauf der Arbeit genutzt wird, um grüne Landbedeckung (GLC) räumlich zu quantifizieren.
Im zweiten konzeptionellen Teil der Arbeit steht die differenzierte Betrachtung von Grünflächen anhand des Beispiels öffentlicher Grünflächen (PGS), die häufig Gegenstand der UG-Forschung ist, im Vordergrund. Doch eine häufig verwendete Quelle für räumliche Daten zu öffentlichen Grünflächen, der European Urban Atlas (EUA), wird bisher nicht flächendeckend für Deutschland erhoben. Dieser Studienteil verfolgt einen datengetriebenen Ansatz, die Verfügbarkeit von öffentlichem Grün auf der räumlichen Ebene von Nachbarschaften für ganz Deutschland zu ermitteln. Hierfür dienen bereits vom EUA erfasste Gebiete als Referenz. Mithilfe einer Kombination von Erdbeobachtungsdaten und Informationen aus dem OpenStreetMap-Projekt wird ein Deep Learning -basiertes Fusionsnetzwerk erstellt, welche die verfügbare Fläche von öffentlichem Grün quantifiziert. Das Ergebnis dieses Schrittes ist ein Modell, welches genutzt wird, um die Menge öffentlicher Grünflächen in der Nachbarschaft zu schätzen (𝑅 2 = 0.952).
Der dritte Studienteil greift die Ergebnisse der ersten beiden Studienteile auf und betrachtet die Verteilung von Grünflächen in Deutschland unter Hinzunahme von georeferenzierten Bevölkerungsdaten. Diese exemplarische Analyse unterscheidet dabei Grünflächen nach zwei Typen: GLC und PGS. Zunächst wird mithilfe deskriptiver Statistiken die generelle Grünflächenverteilung in der Bevölkerung Deutschlands beleuchtet. Daraufhin wird die Verteilungsgerechtigkeit anhand gängiger Gerechtigkeitsmetriken bestimmt. Abschließend werden die Zusammenhänge zwischen der demographischen Komposition der Nachbarschaft und der verfügbaren Menge von Grünflächen anhand dreier exemplarischer soziodemographischer Gesellschaftsgruppen untersucht. Die Analyse zeigt starke Unterschiede der Verfügbarkeit von PGS zwischen städtischen und ländlichen Gebieten. Ein höherer Prozentsatz der Stadtbevölkerung hat Zugriff das Mindestmaß von PGS gemessen an der Vorgabe der Weltgesundheitsorganisation. Die Ergebnisse zeigen auch einen deutlichen Unterschied bezüglich der Verteilungsgerechtigkeit zwischen GLC und PGS und verdeutlichen die Relevanz der Unterscheidung von Grünflächentypen für derartige
Untersuchungen. Die abschließende Betrachtung verschiedener Bevölkerungsgruppen arbeitet Unterschiede auf soziodemographischer Ebene auf.
In der Zusammenschau demonstriert diese Arbeit wie moderne Geodaten und Methoden des maschinellen Lernens genutzt werden können bisherige Limitierungen räumlicher Datensätze zu überwinden. Am Beispiel von Grünflächen in der Wohnumgebung der Bevölkerung Deutschlands wird gezeigt, dass landesweite Analysen zur Umweltgerechtigkeit durch hochaufgelöste und lokal feingliedrige geographische Informationen bereichert werden können. Diese Arbeit verdeutlicht, wie die Methoden der Erdbeobachtung und Geoinformatik einen wichtigen Beitrag leisten können, die Ungleichheit der Wohnumwelt der Menschen zu identifizieren und schlussendlich den nachhaltigen Siedlungsbau in Form von objektiven Informationen zu unterstützen und überwachen.
The positive phase of the subtropical Indian Ocean dipole (SIOD) is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa. This paper examines austral summer rain-bearing circulation types (CTs) in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship. Four austral summer rain-bearing CTs were obtained. Among the four CTs, the CT that featured (i) enhanced cyclonic activity in the southwest Indian Ocean; (ii) positive widespread rainfall anomaly in the southwest Indian Ocean; and (iii) low-level convergence of moisture fluxes from the tropical South Atlantic Ocean, tropical Indian Ocean, and the southwest Indian Ocean, over the south-central landmass of Africa, was found to be related to the positive SIOD climatic mode. The relationship also implies that positive SIOD can be expected to increase the amplitude and frequency of occurrence of the aforementioned CT. The linkage between the CT related to the positive SIOD and austral summer homogeneous regions of rainfall anomalies in Africa south of the equator showed that it is the principal CT that is related to the inter-annual rainfall variability of the south-central regions of Africa, where the SIOD is already known to significantly influence its rainfall variability. Hence, through the large-scale patterns of atmospheric circulation associated with the CT, the SIOD can influence the spatial distribution and intensity of rainfall over the preferred landmass through enhanced moisture convergence.
The July 2021 heavy rainfall episode in parts of Western Europe caused devastating floods, specifically in Germany. This study examines circulation types (CTs) linked to extreme precipitation in Germany. It was investigated if the classified CTs can highlight the anomaly in synoptic patterns that contributed to the unusual July 2021 heavy rainfall in Germany. The North Atlantic Oscillation was found to be the major climatic mode related to the seasonal and inter-annual variations of most of the classified CTs. On average, wet (dry) conditions in large parts of Germany can be linked to westerly (northerly) moisture fluxes. During spring and summer seasons, the mid-latitude cyclone when located over the North Sea disrupts onshore moisture transport from the North Atlantic Ocean by westerlies driven by the North Atlantic subtropical anticyclone. The CT found to have the highest probability of being associated with above-average rainfall in large part of Germany features (i) enhancement and northward track of the cyclonic system over the Mediterranean; (ii) northward track of the North Atlantic anticyclone, further displacing poleward, the mid-latitude cyclone over the North Sea, enabling band of westerly moisture fluxes to penetrate Germany; (iii) cyclonic system over the Baltic Sea coupled with northeast fluxes of moisture to Germany; (iv) and unstable atmospheric conditions over Germany. In 2021, a spike was detected in the amplitude and frequency of occurrence of the aforementioned wet CT suggesting that in addition to the nearly stationary cut-off low over central Europe, during the July flood episode, anomalies in the CT contributed to the heavy rainfall event.
The occurrence of a likely graptolite in lowest Wuliuan strata of the Franconian Forest almost certainly records the oldest known graptolithoid hemichordate in West Gondwana and possibly the oldest graptolite presently known. The fossil is a delicate, erect, apparently unbranched rhabdosome with narrow thecae tentatively assigned to the poorly known genus Ovetograptus of the Dithecodendridae. This report includes an overview of pre-Furongian graptolithoids with slight corrections on the stratigraphic position of earlier reported species.
New U–Pb age and Hf isotope data obtained on detrital zircon grains from Au- and U-bearing Archaean quartz-pebble conglomerates in the Singhbhum Craton, eastern India, specifically the Upper Iron Ore Group in the Badampahar Greenstone Belt and the Phuljhari Formation below the Dhanjori Group provide insights into the zircon provenance and maximum age of sediment deposition. The most concordant, least disturbed \(^{207}\)Pb/\(^{206}\)Pb ages cover the entire range of known magmatic and higher grade metamorphic events in the craton from 3.48 to 3.06 Ga and show a broad maximum between 3.38 and 3.18 Ga. This overlap is also mimicked by Lu–Hf isotope analyses, which returned a wide range in \(_{εHf}\)(t) values from + 6 to − 5, in agreement with the range known from zircon grains in igneous and metamorphic rocks in the Singhbhum Craton. A smaller but distinct age peak centred at 3.06 Ga corresponds to the age of the last major magmatic intrusive event, the emplacement of the Mayurbhanj Granite and associated gabbro, picrite and anorthosite. Thus, these intrusive rocks must form a basement rather than being intrusive into the studied conglomerates as previously interpreted. The corresponding detrital zircon grains all have a subchondritic Hf isotopic composition. The youngest reliable zircon ages of 3.03 Ga in the case of the basal Upper Iron Ore Group in the east of the craton and 3.00 Ga for the Phuljhari Formation set an upper limit on the age of conglomerate sedimentation. Previously published detrital zircon age data from similarly Au-bearing conglomerates in the Mahagiri Quartzite in the Upper Iron Ore Group in the south of the craton gave a somewhat younger maximum age of sedimentation of 2.91 Ga. There, the lower limit on sedimentation is given by an intrusive relationship with a c. 2.8 Ga granite. The time window thus defined for conglomerate deposition on the Singhbhum Craton is almost identical to the age span established for the, in places, Au- and U-rich conglomerates in the Kaapvaal Craton of South Africa: the 2.98–2.78 Ga Dominion Group and Witwatersrand Supergroup in South Africa. Since the recognition of first major concentration of gold on Earth’s surface by microbial activity having taken place at around 2.9 Ga, independent of the nature of the hinterland, the above similarity in age substantially increases the potential for discovering Witwatersrand-type gold and/or uranium deposits on the Singhbhum Craton. Further age constraints are needed there, however, to distinguish between supposedly less fertile (with respect to Au) > 2.9 Ga and more fertile < 2.9 Ga successions.
The effects of drought on tree mortality at forest stands are not completely understood. For assessing their water supply, knowledge of the small-scale distribution of soil moisture as well as its temporal changes is a key issue in an era of climate change. However, traditional methods like taking soil samples or installing data loggers solely collect parameters of a single point or of a small soil volume. Electrical resistivity tomography (ERT) is a suitable method for monitoring soil moisture changes and has rarely been used in forests. This method was applied at two forest sites in Bavaria, Germany to obtain high-resolution data of temporal soil moisture variations. Geoelectrical measurements (2D and 3D) were conducted at both sites over several years (2015–2018/2020) and compared with soil moisture data (matric potential or volumetric water content) for the monitoring plots. The greatest variations in resistivity values that highly correlate with soil moisture data were found in the main rooting zone. Using the ERT data, temporal trends could be tracked in several dimensions, such as the interannual increase in the depth of influence from drought events and their duration, as well as rising resistivity values going along with decreasing soil moisture. The results reveal that resistivity changes are a good proxy for seasonal and interannual soil moisture variations. Therefore, 2D- and 3D-ERT are recommended as comparatively non-laborious methods for small-spatial scale monitoring of soil moisture changes in the main rooting zone and the underlying subsurface of forested sites. Higher spatial and temporal resolution allows a better understanding of the water supply for trees, especially in times of drought.
A fuzzy classification scheme that results in physically interpretable meteorological patterns associated with rainfall generation is applied to classify homogeneous regions of boreal summer rainfall anomalies in Germany. Four leading homogeneous regions are classified, representing the western, southeastern, eastern, and northern/northwestern parts of Germany with some overlap in the central parts of Germany. Variations of the sea level pressure gradient across Europe, e.g., between the continental and maritime regions, is the major phenomenon that triggers the time development of the rainfall regions by modulating wind patterns and moisture advection. Two regional climate models (REMO and CCLM4) were used to investigate the capability of climate models to reproduce the observed summer rainfall regions. Both regional climate models (RCMs) were once driven by the ERA-Interim reanalysis and once by the MPI-ESM general circulation model (GCM). Overall, the RCMs exhibit good performance in terms of the regionalization of summer rainfall in Germany; though the goodness-of-match with the rainfall regions/patterns from observational data is low in some cases and the REMO model driven by MPI-ESM fails to reproduce the western homogeneous rainfall region. Under future climate change, virtually the same leading modes of summer rainfall occur, suggesting that the basic synoptic processes associated with the regional patterns remain the same over Germany. We have also assessed the added value of bias-correcting the MPI-ESM driven RCMs using a simple linear scaling approach. The bias correction does not significantly alter the identification of homogeneous rainfall regions and, hence, does not improve their goodness-of-match compared to the observed patterns, except for the one case where the original RCM output completely fails to reproduce the observed pattern. While the linear scaling method improves the basic statistics of precipitation, it does not improve the simulated meteorological patterns represented by the precipitation regimes.