• Treffer 1 von 1
Zurück zur Trefferliste

Effect of the Degree of the Gate‐Dielectric Surface Roughness on the Performance of Bottom‐Gate Organic Thin‐Film Transistors

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-214830
  • In organic thin‐film transistors (TFTs) fabricated in the inverted (bottom‐gate) device structure, the surface roughness of the gate dielectric onto which the organic‐semiconductor layer is deposited is expected to have a significant effect on the TFT characteristics. To quantitatively evaluate this effect, a method to tune the surface roughness of a gate dielectric consisting of a thin layer of aluminum oxide and an alkylphosphonic acid self‐assembled monolayer over a wide range by controlling a single process parameter, namely the substrateIn organic thin‐film transistors (TFTs) fabricated in the inverted (bottom‐gate) device structure, the surface roughness of the gate dielectric onto which the organic‐semiconductor layer is deposited is expected to have a significant effect on the TFT characteristics. To quantitatively evaluate this effect, a method to tune the surface roughness of a gate dielectric consisting of a thin layer of aluminum oxide and an alkylphosphonic acid self‐assembled monolayer over a wide range by controlling a single process parameter, namely the substrate temperature during the deposition of the aluminum gate electrodes, is developed. All other process parameters remain constant in the experiments, so that any differences observed in the TFT performance can be confidently ascribed to effects related to the difference in the gate‐dielectric surface roughness. It is found that an increase in surface roughness leads to a significant decrease in the effective charge‐carrier mobility and an increase in the subthreshold swing. It is shown that a larger gate‐dielectric surface roughness leads to a larger density of grain boundaries in the semiconductor layer, which in turn produces a larger density of localized trap states in the semiconductor.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Michael Geiger, Rachana Acharya, Eric Reutter, Thomas Ferschke, Ute Zschieschang, Jürgen Weis, Jens Pflaum, Hagen Klauk, Ralf Thomas Weitz
URN:urn:nbn:de:bvb:20-opus-214830
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Materials Interfaces
Erscheinungsjahr:2020
Band / Jahrgang:7
Heft / Ausgabe:10
Aufsatznummer:1902145
Originalveröffentlichung / Quelle:Advanced Materials Interfaces 2020, 7(10):1902145. DOI: 10.1002/admi.201902145
DOI:https://doi.org/10.1002/admi.201902145
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):grain boundaries; organic thin‐film transistors; surface roughness
Datum der Freischaltung:19.04.2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International