• search hit 5 of 8
Back to Result List

Magnetic Excitations in Single and Coupled Atoms on Surfaces: From the Kondo Effect to Yu-Shiba-Rusinov States

Magnetische Anregungen in einzelnen und gekoppelten Atomen auf Oberflächen: Vom Kondo-Effekt zu Yu-Shiba-Rusinov-Zuständen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-320699
  • Magnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magneticMagnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magnetic atoms in proximity to a superconductor. In order to implement and control the proposed applications, a detailed understanding of atomic spins and their interaction with the environment is required. In this thesis, two different systems of magnetic adatoms coupled to metallic and superconducting surfaces are studied by means of scanning tunneling microscopy (STM) and spectroscopy: Co atoms on the clean Cu(111) were among the first systems exhibiting signatures of the Kondo effect in an individual atom. Yet, a recent theoretical work proposed an alternative interpretation of these early experimental results, involving a newly described many-body state. Spin-averaged and -polarized experiments in high magnetic fields presented in this thesis confirm effects beyond the Kondo effect that determine the physics in these Co atoms and suggest a potentially even richer phenomenology than proposed by theory. The second studied system are single and coupled Fe atoms on the superconducting Nb(110) surface. Magnetic impurities on superconducting surfaces locally induce Yu-Shiba-Rusinov (YSR) states inside the superconducting gap due to their pair breaking potential. Coupled systems of such impurities exhibit YSR bands and, if the bands cross the Fermi level such that the band structure is inverted, host Majorana zero modes. Using the example of Fe atoms on Nb(110), the YSR states’ dependence on the adatom–substrate interaction as well as the interatomic YSR state coupling is investigated. In the presence of oxygen on the Nb surface, the adatom–substrate interaction is shown to be heavily modified and the YSR states are found to undergo a quantum phase transition, which can be directly linked to a modified Kondo screening. STM tips functionalized with CO molecules allow to resolve self-assembled one-dimensional chains of Fe atoms on the clean Nb(110) surface to study the YSR states’ coupling. Mapping out the states’ wave functions reveals their symmetry, which is shown to alter as a function of the states’ energy and number of atoms in the chain. These experimental results are reproduced in a simple tight-binding model, demonstrating a straightforward possibility to describe also more complex YSR systems toward engineered, potentially topologically non-trivial states.show moreshow less
  • Magnetische Systeme unterliegen im Limit von wenigen Atomen den Gesetzen der Quantenmechanik. Diese Tatsache beschränkt die minimale Größe magnetischer Bits in der Datenspeicherung, da spontane Änderungen der Magnetisierung zu Datenverlust führen. Gleichzeitig ist es genau jenes quantenmechanische Verhalten, welches es erlaubt, diese Systeme in Quantencomputern zu verwenden. Vorschläge, die dafür notwendigen Qubits zu realisieren, umfassen die Spinzustände einzelner Atome sowie topologisch geschützte Majorana-Nullmoden, welche in SystemenMagnetische Systeme unterliegen im Limit von wenigen Atomen den Gesetzen der Quantenmechanik. Diese Tatsache beschränkt die minimale Größe magnetischer Bits in der Datenspeicherung, da spontane Änderungen der Magnetisierung zu Datenverlust führen. Gleichzeitig ist es genau jenes quantenmechanische Verhalten, welches es erlaubt, diese Systeme in Quantencomputern zu verwenden. Vorschläge, die dafür notwendigen Qubits zu realisieren, umfassen die Spinzustände einzelner Atome sowie topologisch geschützte Majorana-Nullmoden, welche in Systemen gekoppelter magnetischer Atome in Supraleitern auftreten. Für die Umsetzung dieser Anwendungen sind detaillierte Kenntnisse über die Wechselwirkung atomarer Spins mit ihrer Umgebung nötig. In dieser Arbeit werden zwei verschiedene solcher Systeme aus magnetischen Adatomen auf Oberflächen mit der Methode der Rastertunnelmikroskopie (RTM) und -spektroskopie untersucht: Lange galten einzelne Co-Atome auf der Cu(111)-Oberfläche als prototypisches Modell für den Kondo-Effekt in Einzelatomen. Dies wurde jedoch vor Kurzem durch eine Theoriearbeit infrage gestellt, welche die bisherigen experimentellen Daten durch das Auftreten eines neu beschriebenen Vielteilchen-Zustands erklärt. In dieser Arbeit werden neue, spingemittelte und -aufgelöste Messungen in hohen Magnetfeldern präsentiert, welche das Auftreten von Effekten jenseits des Kondo-Effekts in diesem System bestätigen. Im zweiten Teil der Arbeit werden einzelne und gekoppelte Fe-Atome auf der supraleitenden Nb(110)-Oberfläche untersucht. Magnetische Defekte erzeugen in Supraleitern aufgrund ihres Paarbrechungspotentials Yu-Shiba-Rusinov(YSR)-Zustände innerhalb der supraleitenden Bandlücke. Die Kopplung dieser Zustände resultiert in YSR-Bändern, und kann durch Inversion der Bandlücke zum Auftreten von Majorana-Nullmoden führen. Am Beispiel von Fe-Atomen auf Nb(110) wird hier der Einfluss der Adatom–Oberflächen-Wechselwirkung auf die YSR-Zustände sowie deren interatomare Kopplung untersucht. Es wird gezeigt, dass Sauerstoff die Wechselwirkung stark beeinflusst und die atomaren YSR-Zustände infolge dessen einen Quantenphasenübergang durchlaufen. Dieser kann direkt auf eine veränderte Kondo-Abschirmung zurückgeführt werden. Weiter werden mittels mit CO-Molekülen funktionalisierter RTM-Spitzen eindimensionale Ketten aus Fe-Atomen auf der sauberen Nb(110)-Oberfläche identifiziert, anhand derer die Kopplung der YSR-Zustände untersucht wird. Ortsaufgelöste Messungen der zugehörigen Wellenfunktionen decken die Symmetrie dieser Zustände auf, welche ein alternierendes Verhalten zwischen Ketten mit gerader und ungerader Atomzahl aufweist. Diese experimentellen Ergebnisse werden anschließend in einem tight-binding-Modell, welches auch auf komplexere Systeme angewandt werden kann, beschrieben.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Felix FriedrichORCiDGND
URN:urn:nbn:de:bvb:20-opus-320699
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Matthias BodeORCiD
Date of final exam:2023/06/16
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-32069
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 539 Moderne Physik
GND Keyword:Rastertunnelmikroskopie; Oberflächenphysik; Kondo-Effekt; Supraleitung; Magnetische Anregung
Tag:Majorana-Nullmoden; Yu-Shiba-Rusinov-Zustände
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.75.+a Magnetic properties of nanostructures
Release Date:2023/07/04
Licence (German):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International