• search hit 1 of 3
Back to Result List

Adaptive Femtosekunden-Quantenkontrolle komplexer Moleküle in kondensierter Phase

Asaptive femtosecond quantum control of complex molecules in the condensed phase

Please always quote using this URN: urn:nbn:de:bvb:20-opus-20222
  • Die Bildung verschiedener Isomere durch Änderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung für viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchenDie Bildung verschiedener Isomere durch Änderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung für viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchen Isomerisierungsreaktionen in biologisch und chemisch relevanten Systemen. Dazu wurde die Reaktionsdynamik eines in Methanol gelösten Modellmoleküls mittlerer Größe mittels transienter Absorption, Fluorescence Upconversion und Anisotropie Spektroskopie untersucht. In Kooperation mit F. Santoro und R. Improta konnte eine detaillierte Beschreibung der ablaufenden Prozesse gefunden werden. In Übereinstimmung mit den von ihnen durchgeführten quantenmechanischen Simulationen hat sich herausgestellt, dass sich die Dynamik auf der ersten angeregten Potentialfläche nach der Anregung auf zwei Zeitskalen abspielt. Nach dem Passieren einer konische Durchschneidung isomerisiert das Molekül entweder zum thermodynamisch stabileren trans Isomer oder zu den instabileren Produktisomeren. An diesem System wurden nun adaptive Femtosekunden Quantenkontrollexperimente durchgeführt, mit dem Ziel den Isomerisierungsprozess zu beeinflussen. Es konnte erfolgreich gezeigt werden, dass die Isomerisierungseffizienz (die relative Menge von Edukt- zu Produktisomeren) sowohl erhöht als auch verringert werden kann. Einzel-Parameter Kontrollmechanismen wie zum Beispiel das Verwenden verschieden gechirpter Anregeimpulse oder unterschiedlicher Anregeimpulsenergien ergaben einen nur geringen Einfluss auf die Isomerisierungseffizienz. Diese Kontrollstudien über den Isomerisierungsprozess haben weiterführende Experimente an dem sehr komplexen biologischen System Retinal innerhalb des Proteins Bakteriorhodopsin motiviert. Die traditionelle Anrege-Abrege-Abfrage Technik wurde zu einem neuen Anrege-geformten-Abrege-Abfrage Konzept erweitert. Dadurch können molekulare Systeme in den Regionen der Potentialenergie-Landschaft kontrolliert werden, in denen der entscheidende Reaktionsschritt stattfinded. Verschiedene theoretische Berechnungen zum Problem der Erhöhung der Isomerisierungseffizienz stellen in Aussicht, dass Anrege-Abrege-Wiederanrege-Abfrage Mechanismen eine Möglichkeit der effektiven Beeinflussung der Reaktionsdynamik eröffnen. Mit der weiterentwickelten Methode können solche Vier-Puls-Techniken realisiert und ihr Einfluss auf den Reaktionsprozess systematisch untersucht werden. Zusätzlich wurde mittels Variation von parametrisierten spektralen Phasenfunktionen, wie verschiedene Ordnungen Chirp, die Dynamik des Abregungsprozesses beleuchtet. Durch Formen des Abregungsimpulses mittels adaptiver Femtosekunden Quantenkontrolle wurden die Informationen aus den systematische Untersuchung vervollständigt. Häufig sind die aus einem adaptiven Femtosekunden Quantenkontrollexperiment erhaltenen optimalen Laserimpulsformen sehr kompliziert. Besonders Anrege-Abrege Szenarien spielen oft eine wichtige Rolle in den ermittelten optimalen Lösungen und sollten daher gesondert untersucht werden. Dazu können verschiedenfarbige Doppelimpulse verwendet werden, bei denen man sowohl den Pulsabstand als auch die relative Amplitude oder die Phasendifferenz der beiden Einzellpulse systematisch ändert. Diese weiterentwickelte Methode wurde mittels einfacher Experimente charakterisiert. In einem weiteren Schritt wurde ein Aufbau entworfen, der Doppelimpulse erfordert, um ein maximale Ausbeute von Licht bei einer Wellenlänge von 266~nm zu erhalten. Mit dem Kontrollziel der maximalen dritten Harmonischen Ausbeute wurden adaptive Femtosekunden Quantenkontrollexperimente durchgeführt. Durch zusätzliche Messungen von verschiedenfarbigen Doppelimpuls-Kontrolllandschaften konnte die optimale Pulsform ermittelt und bestätigt werden. In einem abschließenden Experiment wurde die Abhängigkeit der Anregeeffizienz eines komplexen, in Methanol gelösten Farbstoffmoleküls auf verschiedene Impulsformen untersucht. Aus den Ergebnissen wird ersichtlich, dass sehr unterschiedliche Impulsformen ein Kontrollziel ähnlich gut erfüllen können. Verschiedenfarbige Doppelimpuls-Kontrolllandschaften können einen Einblick in Kontrollmechanismen von adaptiv gefundenen Impulsformen ermöglichen und Informationen über die Reaktionsdynamik liefern. Mittels der angewandten und weiterentwickelten Methoden mehr über verschiedene Prozesse unterschiedlicher Molekülklassen zu lernen ist ein viel versprechendes und realistisches Ziel für die Zukunft. Die präsentierten Experimente zeigen, dass es möglich ist, geometrische Änderungsreaktionen in chemisch und biologisch relevanten Systemen durch adaptive Femtosekunden Quantenkontrolle zu steuern.show moreshow less
  • The formation of different isomers by rearrangement of the molecular structure plays a substantial role in many areas in physics, chemistry and biology. The control of such reactions is therefore a very appealing task. Directly connected to the control is the observation and characterization of the dynamics. Within the last years, adaptive femtosecond quantum control has proven to be a very powerful tool to control chemical reactions. Prototype experiments based on simple reactions already have shown that the concept of femtosecond quantumThe formation of different isomers by rearrangement of the molecular structure plays a substantial role in many areas in physics, chemistry and biology. The control of such reactions is therefore a very appealing task. Directly connected to the control is the observation and characterization of the dynamics. Within the last years, adaptive femtosecond quantum control has proven to be a very powerful tool to control chemical reactions. Prototype experiments based on simple reactions already have shown that the concept of femtosecond quantum control is also applicable for molecules in a condensed environment. This thesis deals with the observation and control of such isomerization reactions in chemically and biologically relevant systems. Therefore the reaction dynamics of a medium size prototype molecule of the family of the cyanine dyes in solution were investigated by transient absorption spectroscopy, by fluorescence upconversion and by anisotropy spectroscopy. In cooperation with F. Santoro and R. Improta a detailed and reliable description of the overall kinetics was achieved, evidencing a two-timescale dynamics on the first excited potential energy surface after excitation. After decaying through a conical intersection, the molecule isomerizes either to the thermodynamically most stable trans isomer or to two less stable product isomers. Adaptive femtosecond quantum control experiments were performed on this system with the objective to control the isomerization process. Both enhancement as well as reduction of the isomerization efficiency, i.e the relative yield of the educt to the product isomers, were achieved. Single parameter control mechanisms such as applying different chirps or varying the excitation laser pulse energy failed to change the ratio of the photoproducts. These control studies on the isomerization process of a medium size molecule in the condensed phase motivated experiments on the very complex biological system of retinal embedded in bacteriorhodopsin. The traditional pump-dump-probe method was extended to a new pump-shaped-dump-probe scheme to control molecular systems in those regions of the potential-energy landscape where the decisive reaction step occurs. Different theoretical simulations on the enhancement of the isomerization yield predict that pump-dump-repump-probe mechanisms can control the reaction dynamics. Using the novel scheme, such a four-pulse technique with a double-pulse-like shaped dump pulse can be realized and its impact on the reaction process can be systematically investigated. With further parameterized scans of specialized phase functions, such as different orders of chirp, the dynamics of the dumping process has been illuminated. Finally by adaptively shaping the dump pulse the information from the systematic scan has been refined and completed. Very often, adaptively obtained optimal laser pulse shapes are very complicated and can contain structures, that contribute to a certain control mechanism to different degrees. Consequently, it can be difficult to identify the control mechanism of such optimal pulses. Especially pump-dump scenarios often play an important role in the acquired optimal solution and therefore deserve to be investigated separately. For this, colored double pulses are employed and both the pulse separation and the relative amplitude or phase difference of the two subpulses are systematically scanned. This further developed method was first characterized by simple experiments. Then, a setup forcing double-pulses to obtain the highest third harmonic yield was designed. The control objective of maximizing the third harmonic yield has the advantage that the optimal pulse shape can be calculated and intuitively understood. Adaptive femtosecond quantum control experiments were performed with this control objective. With additional measurements of colored double-pulse control landscapes the control mechanism of the adaptively obtained optimal pulse shape can be extracted and confirmed. In a further experiment, the dependence of the excitation efficiency of a complex dye molecule dissolved in methanol on selected pulse shapes probed by transient absorption spectroscopy was studied. The results show that very different pulse shapes are equally adequate to fulfill the control objective. Colored double pulse scans thus can give an insight into the control mechanism of adaptively obtained pulse shapes and provide information about reaction dynamics. Investigations on various processes of different molecular classes using the methods developed and applied here are a promising and realistic goal for the near future. The presented experiments demonstrate a successful manipulation of geometrical rearrangement reactions in chemically and biologically relevant systems by adaptive femtosecond quantum control.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Gerhard Sebastian Vogt
URN:urn:nbn:de:bvb:20-opus-20222
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2006/09/14
Language:German
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Molekül; Isomerisierungsreaktion; Ultrakurzer Lichtimpuls; Femtosekundenbereich; Adaptivregelung
Tag:Isomerizierung; Quantenkontrolle; flüssige Phase; kondensierte Phase; transiente Absorption
condensed phase; isomerization; liquid phase; quantum control; transiente absorption spectroscopy
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.30.-b Specific chemical reactions; reaction mechanisms / 82.30.Qt Isomerization and rearrangement
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.50.-m Photochemistry (for single molecule photochemistry, see 82.37.Vb); Optical spectroscopy in atomic and molecular physics, see 32.30.-r and 33.20.-t; Optical spectroscopy in condensed matter, see 78.35.+c, 78.40.-q, and 78.47.+p / 82.50.Nd Control of photochemical reactions
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.53.-k Femtochemistry [see also 78.47.J- Ultrafast pump/probe spectroscopy (<1 psec) in condensed matter; 42.65.Re Ultrafast processes; optical generation and pulse compression in nonlinear optics] / 82.53.Uv Femtosecond probes of molecules in liquids
Release Date:2006/11/10
Advisor:Prof. Dr. Gustav Gerber