• search hit 1 of 10
Back to Result List

Circulation patterns linked to the positive sub-tropical Indian Ocean dipole

Please always quote using this URN: urn:nbn:de:bvb:20-opus-324119
  • The positive phase of the subtropical Indian Ocean dipole (SIOD) is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa. This paper examines austral summer rain-bearing circulation types (CTs) in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship. Four austral summer rain-bearing CTs were obtained. AmongThe positive phase of the subtropical Indian Ocean dipole (SIOD) is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa. This paper examines austral summer rain-bearing circulation types (CTs) in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship. Four austral summer rain-bearing CTs were obtained. Among the four CTs, the CT that featured (i) enhanced cyclonic activity in the southwest Indian Ocean; (ii) positive widespread rainfall anomaly in the southwest Indian Ocean; and (iii) low-level convergence of moisture fluxes from the tropical South Atlantic Ocean, tropical Indian Ocean, and the southwest Indian Ocean, over the south-central landmass of Africa, was found to be related to the positive SIOD climatic mode. The relationship also implies that positive SIOD can be expected to increase the amplitude and frequency of occurrence of the aforementioned CT. The linkage between the CT related to the positive SIOD and austral summer homogeneous regions of rainfall anomalies in Africa south of the equator showed that it is the principal CT that is related to the inter-annual rainfall variability of the south-central regions of Africa, where the SIOD is already known to significantly influence its rainfall variability. Hence, through the large-scale patterns of atmospheric circulation associated with the CT, the SIOD can influence the spatial distribution and intensity of rainfall over the preferred landmass through enhanced moisture convergence.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Chibuike Chiedozie IbebuchiORCiD
URN:urn:nbn:de:bvb:20-opus-324119
Document Type:Journal article
Faculties:Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) / Institut für Geographie und Geologie
Language:English
Parent Title (English):Advances in Atmospheric Sciences
ISSN:0256-1530
Year of Completion:2023
Volume:40
Issue:1
Pagenumber:110-128
Source:Advances in Atmospheric Sciences (2023) 40:1, 110-128 DOI: 10.1007/s00376-022-2017-2
DOI:https://doi.org/10.1007/s00376-022-2017-2
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 526 Mathematische Geografie
9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Tag:South Indian Ocean; circulation types; moisture convergence; rainfall; subtropical Indian Ocean dipole
Release Date:2024/01/17
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International