• search hit 3 of 5758
Back to Result List

Unconventional and topological superconductivity in correlated non-centrosymmetric systems with spin-orbit coupling

Unkonventionelle und topologische Supraleitung in (nicht)zentrosymmetrischen korrelierten System mit Spin-Bahn-Kopplung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-175034
  • Despite its history of more than one hundred years, the phenomenon of superconductivity has not lost any of its allure. During that time the concept and perception of the superconducting state - both from an experimental and theoretical point of view - has evolved in way that has triggered increasing interest. What was initially believed to simply be the disappearance of electrical resistivity, turned out to be a universal and inevitable result of quantum statistics, characterized by many more aspects apart from its zero resistivity. TheDespite its history of more than one hundred years, the phenomenon of superconductivity has not lost any of its allure. During that time the concept and perception of the superconducting state - both from an experimental and theoretical point of view - has evolved in way that has triggered increasing interest. What was initially believed to simply be the disappearance of electrical resistivity, turned out to be a universal and inevitable result of quantum statistics, characterized by many more aspects apart from its zero resistivity. The insights of BCS-theory eventually helped to uncover its deep connection to particle physics and consequently led to the formulation of the Anderson-Higgs-mechanism. The very core of this theory is the concept of gauge symmetry (breaking). Within the framework of condensed-matter theory, gauge invariance is only one of several symmetry groups which are crucial for the description and classification of superconducting states. \\ In this thesis, we employ time-reversal, inversion, point group and spin symmetries to investigate and derive possible Hamiltonians featuring spin-orbit interaction in two and three spatial dimensions. In particular, this thesis aims at a generalization of existing numerical concepts to open up the path to spin-orbit coupled (non)centrosymmetric superconductors in multi-orbital models. This is done in a two-fold way: On the one hand, we formulate - based on the Kohn-Luttinger effect - the perturbative renormalization group in the weak-coupling limit. On the other hand, we define the spinful flow equations of the effective action in the framework of functional renormalization, which is valid for finite interaction strength as well. Both perturbative and functional renormalization groups produce a low-energy effective (spinful) theory that eventually gives rise to a particular superconducting state, which is investigated on the level of the irreducible two-particle vertex. The symbiotic relationship between both perturbative and functional renormalization can be traced back to the fact that, while the perturbative renormalization at infinitesimal coupling is only capable of dealing with the Cooper instability, the functional renormalization can investigate a plethora of instabilities both in the particle-particle and particle-hole channels. \\ Time-reversal and inversion are the two key symmetries, which are being used to discriminate between two scenarios. If both time-reversal and inversion symmetry are present, the Fermi surface will be two-fold degenerate and characterized by a pseudospin degree of freedom. In contrast, if inversion symmetry is broken, the Fermi surface will be spin-split and labeled by helicity. In both cases, we construct the symmetry allowed states in the particle-particle as well as the particle-hole channel. The methods presented are formally unified and implemented in a modern object-oriented reusable and extendable C++ code. This methodological implementation is employed to one member of both families of pseudospin and helicity characterized systems. For the pseudospin case, we choose the intriguing matter of strontium ruthenate, which has been heavily investigated for already twenty-four years, but still keeps puzzling researchers. Finally, as the helicity based application, we consider the oxide heterostructure LaAlO$_{3}$/SrTiO$_{3}$, which became famous for its highly mobile two- dimensional electron gas and is suspected to host topological superconductivity.show moreshow less
  • Trotz seiner über hundertjährigen Geschichte seit seiner Entdeckung hat das Phänomen der Supraleitung nichts von seiner ursprünglichen Faszination eingebüßt. Vielmehr hat sich in der Zwischenzeit der Begriff und das Verständnis des supraleitenden Zustandes in einer Weise weiterentwickelt, die das Interesse daran eher hat zunehmen lassen. Was anfänglich ausschließlich für ein Verschwinden des elektrischen Widerstands gehalten wurde, ist tatsächlich ein universelles und unvermeidliches Resultat der Quantenstatistik und besitzt vielTrotz seiner über hundertjährigen Geschichte seit seiner Entdeckung hat das Phänomen der Supraleitung nichts von seiner ursprünglichen Faszination eingebüßt. Vielmehr hat sich in der Zwischenzeit der Begriff und das Verständnis des supraleitenden Zustandes in einer Weise weiterentwickelt, die das Interesse daran eher hat zunehmen lassen. Was anfänglich ausschließlich für ein Verschwinden des elektrischen Widerstands gehalten wurde, ist tatsächlich ein universelles und unvermeidliches Resultat der Quantenstatistik und besitzt viel mehr bemerkenswerte Eigenschaften als nur den widerstandslosen elektrischen Transport. Die Erkenntnisse der BCS-Theorie haben schließlich dazu geführt die tiefe Verbindung zur Teilchenphysik zu offenbaren und trugen entscheidend zur Formulierung des Anderson-Higgs-Mechanismus bei. Der wichtigste Baustein dieser Theorie ist das Konzept der (Brechung der) Eichsymmetrie. Im Rahmen der Festkörperphysik ist die Eichsymmetrie nur eine von mehreren Symmetrien, die eine essentielle Rolle für die Beschreibung und Einordnung von Phänomenen der Supraleitung spielen. \\ In dieser Arbeit wenden wir Zeitumkehr-, (räumliche) Inversions-, Punktgruppen- und Spin-Symmetrien an, um mögliche Hamilton-Operatoren in zwei und drei räumlichen Dimensionen, welche Spin-Bahn-Kopplung enthalten, herzuleiten und zu untersuchen. Diese Arbeit zielt auf eine Verallgemeinerung von existierenden numerischen Konzepten ab und erschließt den Weg die supraleitenden Eigenschaften von Modellen mit starker Spin-Bahn-Kopplung und mit oder ohne Inversionszentrum zu untersuchen. Dies geschieht mit Hilfe zweier methodischer Ansätze. Erstens formulieren wir aufbauend auf dem Kohn-Luttinger Effekt die störungstheoretische Renormierungsgruppe im Limes schwacher Kopplung. Zweitens verwenden wir die spinaufgelösten Flussgleichungen der effektiven Wirkung im Rahmen der funktionalen Renormierungsgruppe, die auch für endliche Wechselwirkungsstärke gültig sind. Die symbiotische Ergänzung der perturbativen und funktionalen Renormierungsgruppen ist darauf zurückzuführen, dass es mit der perturbativen Methode zwar möglich ist die Cooper Instabilität bei infinitesimaler Wechselwirkung numerisch exakt zu berechnen, aber nur die funktionale Renormierungsgruppe auch Teilchen-Loch Kondensate zugänglich macht. \\ Zeitumkehr- und Inversionssymmetrie sind die beiden Schlüsselsymmetrien, die verwendet werden, um zwei Szenarien zu unterscheiden. Falls sowohl Zeitumkehr- als auch Inversionssymmetrie gültig sind, sind die Fermiflächen zweifach entartet und durch einen Pseudospin-Freiheitsgrad charakterisiert. Im Gegensatz dazu führt der Verlust der Inversionssymmetrie zur Spinaufspaltung der Fermiflächen, die dann durch die sogenannte Helizität gekennzeichnet sind. In beiden Fällen leiten wir alle symmetrie-erlaubten Zustände her, welche die entsprechenden Teilchen-Teilchen und Teilchen-Loch Kondensate beschreiben. Die vorstellten und verallgemeinerten Methoden sind im Rahmen dieser Arbeit formal miteinander verbunden und in einem modernen objektorientierten C++ Quellcode implementiert worden. \\ Als erste vorläufige Anwendungen für diese methodische Implementierung betrachten wir zwei Systeme, die jeweils einer der beiden Familien zugeordnet werden können. Zum einen berechnen wir in der Pseudospin-Formulierung der perturbativen und funktionalen Renormierungsgruppen die Instabilitäten eines Dreiorbital-Modells für Strontiumruthenat, das seit seiner erstmaligen Synthese trotz intensiver Forschung immer noch Rätsel aufgibt. Zum anderen betrachten wir das zweidimensionale Elektronengas, das sich an der Schnittstelle zwischen LaAlO$_{3}$ und SrTiO$_{3}$ bildet und welches durch seine hohe Ladungsträgermobilität bekannt geworden ist.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Mario Fink
URN:urn:nbn:de:bvb:20-opus-175034
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Referee:Prof. Dr. Ronny Thomale, Prof. Dr. Björn Trauzettel
Date of final exam:2018/12/07
Language:English
Year of Completion:2019
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 539 Moderne Physik
GND Keyword:Quanten-Vielteilchensysteme; Korrelierte Fermionen; Spin-Bahn-Kopplung; Perturbative/Funktionale Renormierungsgruppe; Unkonventionelle/Topologische Supraleitung
Tag:Correlated Fermions; Perturbative/Functional Renormalization Group; Quantum many-body systems; Spin-Orbit interaction; Unconventional/Topological superconductivity
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 74.00.00 Superconductivity (for superconducting devices, see 85.25.-j) / 74.20.-z Theories and models of superconducting state / 74.20.Rp Pairing symmetries (other than s-wave)
Release Date:2019/01/14
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International