• Treffer 1 von 1
Zurück zur Trefferliste

Time evolution of entanglement for holographic steady state formation

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-173798
  • Within gauge/gravity duality, we consider the local quench-like time evolution obtained by joining two 1+1-dimensional heat baths at different temperatures at time \(t\) = 0. A steady state forms and expands in space. For the 2+1-dimensional gravity dual, we find that the “shockwaves” expanding the steady-state region are of spacelike nature in the bulk despite being null at the boundary. However, they do not transport information. Moreover, by adapting the time-dependent Hubeny-Rangamani-Takayanagi prescription, we holographically calculateWithin gauge/gravity duality, we consider the local quench-like time evolution obtained by joining two 1+1-dimensional heat baths at different temperatures at time \(t\) = 0. A steady state forms and expands in space. For the 2+1-dimensional gravity dual, we find that the “shockwaves” expanding the steady-state region are of spacelike nature in the bulk despite being null at the boundary. However, they do not transport information. Moreover, by adapting the time-dependent Hubeny-Rangamani-Takayanagi prescription, we holographically calculate the entanglement entropy and also the mutual information for different entangling regions. For general temperatures, we find that the entanglement entropy increase rate satisfies the same bound as in the ‘entanglement tsunami’ setups. For small temperatures of the two baths, we derive an analytical formula for the time dependence of the entanglement entropy. This replaces the entanglement tsunami-like behaviour seen for high temperatures. Finally, we check that strong subadditivity holds in this time-dependent system, as well as further more general entanglement inequalities for five or more regions recently derived for the static case.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Johanna Erdmenger, Daniel Fernández, Mario Flory, Eugenio Megías, Ann-Kathrin Straub, Piotr Witkowski
URN:urn:nbn:de:bvb:20-opus-173798
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Journal of High Energy Physics
Erscheinungsjahr:2017
Band / Jahrgang:2017
Heft / Ausgabe:10
Aufsatznummer:034
Originalveröffentlichung / Quelle:Journal of High Energy Physics (2017) 10:034. https://doi.org/10.1007/JHEP10(2017)034
DOI:https://doi.org/10.1007/JHEP10(2017)034
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):AdS-CFT Correspondence; Gauge-gravity correspondence; Holography and condensed matter physics (AdS/CMT); Physics
Datum der Freischaltung:24.03.2022
EU-Projektnummer / Contract (GA) number:PIEF-GA-2013-623006
OpenAIRE:OpenAIRE
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International