• Treffer 2 von 4
Zurück zur Trefferliste

Engineering approaches in biofabrication of vascularized structures

Ingenieurtechnische Ansätze in der Biofabrikation vaskularisierter Strukturen

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-345892
  • Biofabrication technologies must address numerous parameters and conditions to reconstruct tissue complexity in vitro. A critical challenge is vascularization, especially for large constructs exceeding diffusion limits. This requires the creation of artificial vascular structures, a task demanding the convergence and integration of multiple engineering approaches. This doctoral dissertation aims to achieve two primary objectives: firstly, to implement and refine engineering methods for creating artificial microvascular structures using MeltBiofabrication technologies must address numerous parameters and conditions to reconstruct tissue complexity in vitro. A critical challenge is vascularization, especially for large constructs exceeding diffusion limits. This requires the creation of artificial vascular structures, a task demanding the convergence and integration of multiple engineering approaches. This doctoral dissertation aims to achieve two primary objectives: firstly, to implement and refine engineering methods for creating artificial microvascular structures using Melt Electrowriting (MEW)-assisted sacrificial templating, and secondly, to deepen the understanding of the critical factors influencing the printability of bioink formulations in 3D extrusion bioprinting. In the first part of this dissertation, two innovative sacrificial templating techniques using MEW are explored. Utilizing a carbohydrate glass as a fugitive material, a pioneering advancement in the processing of sugars with MEW with a resolution under 100 microns was made. Furthermore, by introducing the “print-and-fuse” strategy as a groundbreaking method, biomimetic branching microchannels embedded in hydrogel matrices were fabricated, which can then be endothelialized to mirror in vivo vascular conditions. The second part of the dissertation explores extrusion bioprinting. By introducing a simple binary bioink formulation, the correlation between physical properties and printability was showcased. In the next step, employing state-of-the-art machine-learning approaches revealed a deeper understanding of the correlations between bioink properties and printability in an extended library of hydrogel formulations. This dissertation offers in-depth insights into two key biofabrication technologies. Future work could merge these into hybrid methods for the fabrication of vascularized constructs, combining MEW's precision with fine-tuned bioink properties in automated extrusion bioprinting.zeige mehrzeige weniger
  • Biofabrikationstechnologien müssen zahlreiche Parameter und Bedingungen berücksichtigen, um die Komplexität von Gewebe in vitro zu rekonstruieren. Eine entscheidende Herausforderung ist die Vaskularisierung, insbesondere bei großen Konstrukten, die die Diffusionsgrenzen überschreiten. Dies erfordert die Schaffung künstlicher Gefäßstrukturen, eine Aufgabe, die die Konvergenz und Integration verschiedener technischer Ansätze erfordert. Mit dieser Dissertation sollen zwei Hauptziele erreicht werden: erstens die Implementierung und VerfeinerungBiofabrikationstechnologien müssen zahlreiche Parameter und Bedingungen berücksichtigen, um die Komplexität von Gewebe in vitro zu rekonstruieren. Eine entscheidende Herausforderung ist die Vaskularisierung, insbesondere bei großen Konstrukten, die die Diffusionsgrenzen überschreiten. Dies erfordert die Schaffung künstlicher Gefäßstrukturen, eine Aufgabe, die die Konvergenz und Integration verschiedener technischer Ansätze erfordert. Mit dieser Dissertation sollen zwei Hauptziele erreicht werden: erstens die Implementierung und Verfeinerung technischer Methoden zur Herstellung künstlicher mikrovaskulärer Strukturen mit Hilfe des "Melt Electrowriting" (MEW) und zweitens die Vertiefung des Verständnisses der kritischen Faktoren, die die Druckbarkeit von Biotintenformulierungen beim 3D-Extrusions-Bioprinting beeinflussen. Im ersten Teil dieser Dissertation werden zwei innovative Opferschablonentechniken unter Verwendung von MEW erforscht. Unter Verwendung eines Kohlenhydratglases als flüchtiges Material wurde ein bahnbrechender Fortschritt bei der Verarbeitung von Zuckern mit MEW mit einer Auflösung von unter 100 Mikrometern erzielt. Darüber hinaus wurden durch die Einführung der "Print-and-Fuse"-Strategie als bahnbrechende Methode biomimetische, verzweigte Mikrokanäle hergestellt, die in Hydrogelmatrizen eingebettet sind und anschließend endothelialisiert werden können, um die vaskulären Bedingungen in vivo wiederzugeben. Der zweite Teil der Dissertation befasst sich mit dem Extrusions-Bioprinting. Durch die Einführung einer einfachen binären Biotintenformulierung wurde die Korrelation zwischen physikalischen Eigenschaften und Druckbarkeit aufgezeigt. Im nächsten Schritt wurde durch den Einsatz modernster Methoden des maschinellen Lernens ein tieferes Verständnis für die Zusammenhänge zwischen den Eigenschaften der Biotinte und der Druckbarkeit in einer erweiterten Bibliothek von Hydrogelformulierungen gewonnen. Diese Dissertation bietet tiefe Einblicke in zwei Schlüsseltechnologien der Biofabrikation. Zukünftige Arbeiten könnten diese zu hybriden Methoden für die Herstellung vaskularisierter Konstrukte zusammenführen und dabei die Präzision von MEW mit fein abgestimmten Biotinteneigenschaften im automatisierten Extrusionsbioprinting kombinieren.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Ali NadernezhadORCiDGND
URN:urn:nbn:de:bvb:20-opus-345892
Dokumentart:Dissertation
Titelverleihende Fakultät:Universität Würzburg, Graduate Schools
Institute der Universität:Graduate Schools / Graduate School of Life Sciences
Fakultät für Chemie und Pharmazie / Institut für Funktionsmaterialien und Biofabrikation
Gutachter / Betreuer:Prof. Dr. Jürgen Groll, Prof. Dr. Iwona Cicha, Prof. Dr. Süleyman Ergün, Prof. Dr.-Ing. habil. Aldo R. Boccaccini
Datum der Abschlussprüfung:20.07.2023
Sprache der Veröffentlichung:Englisch
Erscheinungsjahr:2024
DOI:https://doi.org/10.25972/OPUS-34589
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 54 Chemie / 542 Techniken, Ausstattung, Materialien
Normierte Schlagworte (GND):3D-DruckGND; RheologieGND; Maschinelles LernenGND
Freie Schlagwort(e):Bioinks; Hyrogels; Melt Electrowriting; Valscularization
Datum der Freischaltung:31.01.2024
Lizenz (Deutsch):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International