• Treffer 2 von 2
Zurück zur Trefferliste

Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion‐Based Additive Manufacturing

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-224513
  • Several manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)‐based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to theSeveral manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)‐based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt‐processing techniques. Using extrusion‐based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1–15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well‐defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Jannik Mechau, Andreas Frank, Ezgi Bakirci, Simon Gumbel, Tomasz Jungst, Reiner Giesa, Jürgen Groll, Paul D. Dalton, Hans‐Werner Schmidt
URN:urn:nbn:de:bvb:20-opus-224513
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Macromolecular Chemistry and Physics
Erscheinungsjahr:2021
Band / Jahrgang:222
Heft / Ausgabe:1
Aufsatznummer:2000265
Originalveröffentlichung / Quelle:Macromolecular Chemistry and Physics 2021, 222(1):2000265. DOI: 10.1002/macp.202000265
DOI:https://doi.org/10.1002/macp.202000265
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Freie Schlagwort(e):(AB)\(_{n}\) segmented copolymers; 3D printing; biocompatibility; melt electrowriting
Datum der Freischaltung:17.11.2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International