The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 79 of 738
Back to Result List

Soft x-ray spectroscopic study of methanol and glycine peptides in different physical environments

Weichröntgenspektroskopische Untersuchung von Methanol und Glycin Peptiden in unterschiedlichen physischen Umgebungen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-147111
  • Ion-specific effects occur in a huge variety of aqueous solutions of electrolytes and larger molecules like peptides, altering properties such as viscosity, enzyme activity, protein stability, and salting-in and salting-out behavior of proteins. Typically, these type of effects are rationalized in terms of the Hofmeister series, which originally orders cations and anions according to their ability to enhance or suppress the solubility of proteins in water. This empirical order, however, is still not understood yet. Quite some effort was made toIon-specific effects occur in a huge variety of aqueous solutions of electrolytes and larger molecules like peptides, altering properties such as viscosity, enzyme activity, protein stability, and salting-in and salting-out behavior of proteins. Typically, these type of effects are rationalized in terms of the Hofmeister series, which originally orders cations and anions according to their ability to enhance or suppress the solubility of proteins in water. This empirical order, however, is still not understood yet. Quite some effort was made to gain a molecular level understanding of this phenomenon, yet no consensus has been found about the underlying mechanisms and the determination and localization of the interaction sites. Resonant inelastic soft x-ray scattering (RIXS) combines x-ray emission (XES) and absorption spectroscopies (XAS), probing the partial local density of states of both occupied and unoccupied electronic states and is thus a promising candidate to shed more light onto the issue. The studies presented in this work are directed towards an improved understanding of the interaction between salts and peptides. In order to address this topic, the impact of different physical environments on the electronic structure of small molecules (i.e., methanol and glycine derived peptides) is investigated systematically using soft x-ray spectroscopic methods, corroborated with density functional theory (DFT) calculations. In a first step, molecules without any interactions to the surrounding are investigated, using gas-phase methanol as a model system. Thereby, the local and element specific character of RIXS is demonstrated and used to separately probe the local electronic structure of methanol’s hydroxyl and methyl group, respectively. The attribution of the observed emission features to distinct molecular orbitals is confirmed by DFT calculations, which also quantitatively explain the different relative intensities of the emission features. For resonant excitation of the O K pre-edge absorption resonance, strong isotope effects are found that are explained by dynamical processes at the hydroxyl group. This serves as an excellent example for possible consequences of a local change in the geometric structure or symmetry of a molecule on its electronic structure. In the following, the sample system is expanded to the amino acid glycine and its smallest derived peptides diglycine and triglycine. As a first step, they are studied in their crystalline form in solid state. Again, a comprehensive picture of the electronic structure is developed by measuring RIXS maps at the oxygen and nitrogen K absorption edge, corroborated by DFT calculations. Similar to the case of methanol, dynamic processes at the protonated amino group of the molecules after exciting the nitrogen atom have a strong influence on the emission spectra. Furthermore, it is shown that RIXS can be used to selectively excite the peptide nitrogen to probe the electronic structure around it. A simple building block approach for XES spectra is applied to separate the contribution of the emission attributed to transitions into core holes at the peptide and the amino nitrogen, respectively. In the aqueous solution, the surrounding water molecules slightly change the electronic structure, probably via interactions with the charged functional groups. The effects on the x-ray emission spectra, however, are rather small. Much bigger changes are observed when manipulating the protonation state of the functional groups by adjusting the pH value of the solution. A protonation of the carboxyl group at low pH values, as well as a deprotonation of the amino group at high pH values lead to striking changes in the shape of the RIXS maps. In a comprehensive study of glycine’s XES spectra at varying pH values, changes in the local electronic structure are not only observed in the immediate surrounding of the manipulated functional groups but also in more distant moieties of the molecule. Finally, the study is extended to mixed aqueous solutions of diglycine and a variety of different salts as examples for systems where Hofmeister effects are observed. To investigate the influence of different cations and anions on the electronic structure of diglycine, two series of chlorine and potassium salts are used. Ion-specific effects are identified for both cases. Some of the changes in the x-ray emission spectra of diglycine in the mixed solutions qualitatively follow the Hofmeister series as a function of the used salt. The observed trends thereby indicate an increased interaction between the electron density around the peptide oxygen with the cations, whereas anions seem to interact with the amino group of the peptide.show moreshow less
  • Ionenspezifische Effekte treten in einer Vielzahl von wässrigen Lösungen aus Elektrolyten und größeren Molekülen wie Peptiden auf. Die Ionen bewirken dabei Änderungen in Eigenschaften wie z.B. der Viskosität, den Aktivitäten von Enzymen, der Stabilität von Proteinen und deren Ein- bzw. Aussalzverhalten. Typischerweise wird die ionenabhängige Ausprägung derartiger Effekte mithilfe der Hofmeister–Serie beschrieben, die ursprünglich Ionen nach ihrer Fähigkeit ordnete, die Löslichkeit von Hühnereiweis in Wasser zu steigern oder zu unterdrücken. DieIonenspezifische Effekte treten in einer Vielzahl von wässrigen Lösungen aus Elektrolyten und größeren Molekülen wie Peptiden auf. Die Ionen bewirken dabei Änderungen in Eigenschaften wie z.B. der Viskosität, den Aktivitäten von Enzymen, der Stabilität von Proteinen und deren Ein- bzw. Aussalzverhalten. Typischerweise wird die ionenabhängige Ausprägung derartiger Effekte mithilfe der Hofmeister–Serie beschrieben, die ursprünglich Ionen nach ihrer Fähigkeit ordnete, die Löslichkeit von Hühnereiweis in Wasser zu steigern oder zu unterdrücken. Die empirische Abfolge der Ionen in der Hofmeister–Serie kann jedoch bis heute nicht zweifelsfrei erklärt werden. Trotz weitreichender Bemühungen, ein molekulares Verständnis dieses Phänomens zu schaffen, konnte bisher keine Einigung über die zugrundeliegenden Mechanismen und die genauere Bestimmung und Lokalisierung der Wechselwirkung erzielt werden. Die resonante inelastische Weichröntgenstreuung (RIXS) kombiniert die beiden Methoden der Röntgenemissions– (XES) und Röntgenabsorptionsspektroskopie (XAS). So können mit RIXS Informationen sowohl über die besetzten als auch die unbesetzten elektronischen Zustände gesammelt und zu einem umfassenden Bild der elektronischen Struktur des Systems verknüpft werden, was diese Methode zu einem vielversprechenden Werkzeug macht, etwas mehr Licht auf die Thematik zu werfen. Die in dieser Arbeit präsentierten Ergebnisse zielen deshalb darauf ab, ein verbessertes Verständnis der Wechselwirkungen zwischen Salzen und Peptiden in wässriger Lösung zu schaffen. Hierfür wird systematisch der Einfluss verschiedenster physikalischer Umgebungen auf die elektronische Struktur von kleinen Molekülen (Methanol und von Glycin abgeleitete Peptide) mittels Weichröntgenspektroskopie, unterstützt durch Dichtefunktionaltheorie (DFT) Rechnungen, untersucht. In einem ersten Schritt werden isolierte Moleküle ohne jeglicheWechselwirkung zu ihrer unmittelbaren Umgebung anhand von Methanol in der Gasphase als Modelsystem untersucht. Hierbei wird insbesondere der lokale und elementspezifische Charakter von RIXS demonstriert und die lokale elektronische Struktur von Methanols Hydroxyl– und Methylgruppe untersucht. Mithilfe von DFT–Rechnungen werden die beobachteten Emissionslinien in den XES–Spektren der Emission bestimmter Molekülorbitale zugeordnet und deren relative Emissionsintensitäten erläutert. Für eine resonante Anregung der ersten Resonanz an der Sauerstoff–K–Absorptionskante werden starke Isotopeneffekte beobachtet, die durch dynamische Prozesse an der Hydroxylgruppe erklärt werden können. Dies dient als hervorragendes Beispiel für mögliche Auswirkungen, die eine lokale Änderung in der Geometrie oder Symmetrie des Moleküls auf dessen elektronische Struktur haben kann. Im weiteren Verlauf dieser Arbeit wird das untersuchte Probensystem um die Aminosäure Glycin und deren kleinste Peptide Diglycin und Triglycin, vorerst in ihrer kristallinen Form als Festkörper, erweitert. Mithilfe von RIXS–Karten der Stickstoff– und Sauerstoff–K–Absorptionskanten wird erneut, unterstützt durch DFT–Rechnungen, ein umfassendes Bild der elektronischen Struktur der Moleküle gezeichnet. Ähnlich zum Fall von Methanol werden die Emissionsspektren an der Stickstoff–K–Kante stark von dynamischen Prozessen an der protonierten Aminogruppe der Moleküle beeinflusst. Zudem wird gezeigt, dass RIXS gezielt dazu verwendet werden kann, das Stickstoffatom in der Peptidbindung anzuregen und die elektronische Struktur in dessen lokaler Umgebung zu untersuchen. Desweiteren wird ein einfaches Baukastenprinzip für XES–Spektren dazu genutzt, die spektralen Anteile der Emission aus Übergängen an den beiden Stickstoffatomen in Diglycin zu isolieren. In wässriger Lösung kann eine leichte Veränderung der elektronischen Struktur der Moleküle durch die Wechselwirkung mit benachbarten Wassermolekülen, vermutlich an den geladenen funktionellen Gruppen, beobachtet werden. Die Auswirkungen auf die XES–Spektren sind jedoch eher gering. Deutlich größere Veränderungen werden beobachtet, wenn man den Protonierungszustand der Moleküle über den pH–Wert der Lösung manipuliert. Sowohl die Protonierung der Carboxylgruppe für kleine pH–Werte als auch die Deprotonierung der Aminogruppe in basischer Lösung führen zu starken Veränderungen in den RIXS–Karten. In einer umfangreichen Untersuchung der XES–Spektren von Glycin als Funktion des pH–Wertes wird gezeigt, dass sich die Änderungen jedoch nicht nur örtlich begrenzt auf die Umgebung der manipulierten funktionellen Gruppe, sondern auch auf die elektronische Struktur in weiter entfernten Bereichen des Moleküls auswirken. Als Beispiel für Systeme in denen Hofmeister–Effekte beobachtet werden, werden zu guter Letzt gemischte wässrige Lösungen aus Diglycin und verschiedenen Salzen untersucht. Um den Einfluss verschiedener Kationen auf die elektronische Struktur der Diglycin Moleküle zu erfassen wird eine Reihe unterschiedlicher Chloride verwendet, wohingegen eine Reihe von Kaliumsalzen für die Untersuchung verschiedener Anionen herangezogen wird. In beiden Fällen werden ionenspezifische Auswirkungen auf die XES–Spektren von Diglycin beobachtet, die qualitativ der Sortierung innerhalb der Hofmeister–Serie folgen. Die beobachteten Änderungen deuten dabei darauf hin, dass Kationen unterschiedlich stark mit dem Sauerstoff in der Peptidbindung und dessen unmittelbarer Umgebung wechselwirken, wohingegen Anionen eine gesteigerte Affinität zur Aminogruppe von Diglycin aufweisen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Andreas Benkert
URN:urn:nbn:de:bvb:20-opus-147111
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Friedrich Reinert, Prof. Dr. Jean Geurts
Date of final exam:2017/02/10
Language:English
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Methanol; Röntgenspektroskopie; Peptide; XES
Tag:Gasphase; Glycin Peptide; Hofmeister; Hofmeister-Serie; Inelastische Röntgenstreuung; ionenspezifische Effekte; wässrige Lösung
RIXS; glycine peptides; ion-specific effects
Release Date:2017/04/18
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung