• search hit 1 of 23
Back to Result List

Growth and Spectroscopy of the Two-dimensional Topological Insulator Bismuthene on SiC(0001)

Wachstum und Spektroskopie des zweidimensionalen topologischen Isolators Bismuthen auf SiC(0001)

Please always quote using this URN: urn:nbn:de:bvb:20-opus-320084
  • A plethora of novel material concepts are currently being investigated in the condensed matter research community. Some of them hold promise to shape our everyday world in a way that silicon-based semiconductor materials and the related development of semiconductor devices have done in the past. In this regard, the last decades have witnessed an explosion of studies concerned with so called ‘’quantum materials’’ with emerging novel functionalities. These could eventually lead to new generations of electronic and/or spintronic devices. OneA plethora of novel material concepts are currently being investigated in the condensed matter research community. Some of them hold promise to shape our everyday world in a way that silicon-based semiconductor materials and the related development of semiconductor devices have done in the past. In this regard, the last decades have witnessed an explosion of studies concerned with so called ‘’quantum materials’’ with emerging novel functionalities. These could eventually lead to new generations of electronic and/or spintronic devices. One particular material class, the so called topological materials, play a central role. As far as their technological applicability is concerned, however, they are still facing outstanding challenges to date. Predicted for the first time in 2005 and experimentally verified in 2007, two-dimensional topological insulators (2D TIs) (a.k.a. quantum spin Hall insulators) exhibit the outstanding property of hosting spin-polarized metallic states along the boundaries of the insulating 2D bulk material, which are protected from elastic single-particle backscattering and give rise to the quantum spin Hall effect (QSHE). Owing to these peculiar properties the QSHE holds promise for dissipationless charge and/or spin transport. However, also in today’s best 2D TIs the observation of the QSHE is still limited to cryogenic temperatures of maximum 100 K. Here, the discovery of bismuthene on SiC(0001) has marked a milestone towards a possible realization of the QSHE at or beyond room-temperature owing to the massively increased electronic bulk energy gap on the order of 1 eV. This thesis is devoted to and motivated by the goal of advancing its synthesis and to build a deeper understanding of its one-particle and two-particle electronic properties that goes beyond prior work. Regarding the aspect of material synthesis, an improved growth procedure for bismuthene is elaborated that increases the domain size of the material considerably (by a factor of ≈ 3.2 - 6.5 compared to prior work). The improved film quality is an important step towards any future device application of bismuthene, but also facilitates all further basic studies of this material. Moreover, the deposition of magnetic transition metals (Mn and Co) on bismuthene is investigated. Thereby, the formation of ordered magnetic Bi-Mn/Co alloys is realized, their structure is resolved with scanning tunneling microscopy (STM), and their pristine electronic properties are resolved with scanning tunneling spectroscopy (STS) and photoemission spectroscopy (PES). It is proposed that these ordered magnetic Bi-Mn/Co-alloys offer the potential to study the interplay between magnetism and topology in bismuthene in the future. In this thesis, a wide variety of spectroscopic techniques are employed that aim to build an understanding of the single-particle, as well as two-particle level of description of bismuthene's electronic structure. The techniques involve STS and angle-resolved PES (ARPES) on the one hand, but also optical spectroscopy and time-resolved ARPES (trARPES), on the other hand. Moreover, these experiments are accompanied by advanced numerical modelling in form of GW and Bethe-Salpeter equation calculations provided by our theoretical colleagues. Notably, by merging many experimental and theoretical techniques, this work sets a benchmark for electronic structure investigations of 2D materials in general. Based on the STS studies, electronic quasi-particle interferences in quasi-1D line defects in bismuthene that are reminiscent of Fabry-Pérot states are discovered. It is shown that they point to a hybridization of two pairs of helical boundary modes across the line defect, which is accompanied by a (partial) lifting of their topological protection against elastic single-particle backscattering. Optical spectroscopy is used to reveal bismuthene's two-particle elecronic structure. Despite its monolayer thickness, a strong optical (two-particle) response due to enhanced electron-hole Coulomb interactions is observed. The presented combined experimental and theoretical approach (including GW and Bethe-Salpeter equation calculations) allows to conclude that two prominent optical transitions can be associated with excitonic transitions derived from the Rashba-split valence bands of bismuthene. On a broader scope this discovery might promote further experiments to elucidate links of excitonic and topological physics. Finally, the excited conduction band states of bismuthene are mapped in energy and momentum space employing trARPES on bismuthene for the first time. The direct and indirect band gaps are succesfully extracted and the effect of excited charge carrier induced gap-renormalization is observed. In addition, an exceptionally fast excited charge carrier relaxation is identified which is explained by the presence of a quasi-metallic density of states from coupled topological boundary states of domain boundaries.show moreshow less
  • Zahlreiche neuartige Materialkonzepte werden derzeit in der Festkörperforschung untersucht. Einige von ihnen haben das Potenzial, unsere Alltagswelt in einer Weise zu beeinflussen, wie es Halbleitermaterialien auf Siliziumbasis und die damit verbundene Entwicklung von Halbleiterbauelemente in der Vergangenheit getan haben. In diesem Zusammenhang gab es in den letzten Jahrzehnten eine regelrechte Flut von Untersuchungen zu sogenannten „Quantenmaterialien“ mit völlig neuen Funktionalitäten. Diese könnten in Zukunft schließlich zu einer neuenZahlreiche neuartige Materialkonzepte werden derzeit in der Festkörperforschung untersucht. Einige von ihnen haben das Potenzial, unsere Alltagswelt in einer Weise zu beeinflussen, wie es Halbleitermaterialien auf Siliziumbasis und die damit verbundene Entwicklung von Halbleiterbauelemente in der Vergangenheit getan haben. In diesem Zusammenhang gab es in den letzten Jahrzehnten eine regelrechte Flut von Untersuchungen zu sogenannten „Quantenmaterialien“ mit völlig neuen Funktionalitäten. Diese könnten in Zukunft schließlich zu einer neuen Generation von elektronischen und/oder spintronischen Bauelementen führen. Eine spezielle Materialklasse, die so genannten topologischen Materialien, spielen dabei eine wichtige Rolle. Hinsichtlich ihrer technologischen Anwendbarkeit stehen sie jedoch bis heute vor großen Herausforderungen. Zweidimensionale topologische Isolatoren (2D TIs) (auch bekannt als Quanten Spin Hall Isolatoren) wurden erstmals 2005 vorhergesagt und schließlich 2007 experimentell bestätigt. Diese Materialien haben die außergewöhnliche Eigenschaft, dass sie spinpolarisierte metallische Zustände entlang der Grenzen des isolierenden 2D-Volumenmaterials aufweisen, die vor elastischer Ein-Teilchen-Rückstreuung geschützt sind und damit den Quanten-Spin-Hall-Effekt (QSHE) begründen. Aufgrund dieser besonderen Eigenschaften verspricht der QSHE einen dissipationsfreien Ladungs- und/oder Spintransport. Allerdings ist die Beobachtung des QSHE auch in den gegenwärtig am besten entwickelten 2D-TIs immer noch auf kryogene Temperaturen von maximal 100 K beschränkt. In diesem Zusammenhang war die Entdeckung von Bismuthen (engl. bismuthene) auf SiC(0001) ein Meilenstein in Bezug auf eine mögliche Realisierung des QSHE bei oder oberhalb von Raumtemperatur aufgrund der massiv vergrößerten elektronischen Volumenenergielücke in der Größenordnung von 1 eV. Dieser Arbeit liegt das Ziel und die Motivation zugrunde, die Synthese von Bismuthen zu verbessern und darüber hinaus das derzeitige Verständnis der elektronischen Ein- und Zweiteilchen-Eigenschaften dieses Materials zu erweitern. Was den Aspekt der Materialsynthese betrifft, so wird ein verbessertes Wachstumsverfahren für Bismuthen erarbeitet, das die Domänengröße des Materials beträchtlich erhöht (um einen Faktor von ≈ 3.2 - 6.5 im Vergleich zu früheren Arbeiten). Die verbesserte Filmqualität stellt einen wichtigen Schritt in Hinblick auf zukünftige Anwendungen von Bismuthen dar, erleichtert darüber hinaus aber auch alle grundlegenden Untersuchungen mit diesem Material. Darüber hinaus wird die Deposition von magnetischen übergangsmetallen (Mn und Co) auf Bismuthen erforscht. So konnten geordnete magnetische Bi-Mn/Co-Legierungen hergestellt werden, deren Struktur mit Rastertunnelmikroskopie (STM) und deren elektronische Eigenschaften mit Rastertunnelspektroskopie (STS) und Photoemissionsspektroskopie (PES) aufgelöst wurden. Es wird nahegelegt, dass diese geordneten magnetischen Bi-Mn/Co-Legierungen das Potenzial bieten, die Wechselwirkung zwischen Magnetismus und Topologie in Bismuthen in Zukunft zu untersuchen. In dieser Dissertation werden eine Vielzahl von spektroskopischen Techniken eingesetzt, die darauf abzielen, die elektronische Struktur von Bismuthen auf der Ein-Teilchen- und Zwei-Teilchen-Ebene zu verstehen. Die Techniken umfassen einerseits STS und winkelaufgelöste PES (ARPES), andererseits aber auch optische Spektroskopie und zeitaufgelöste ARPES (trARPES). Darüber hinaus werden diese Experimente durch umfangreiche numerische Modellierungen in Form von GW-Rechnungen und Lösungen der Bethe-Salpeter-Gleichung unterstützt, die von unseren theoretischen Kollegen durchgeführt wurden. Durch die Verknüpfung zahlreicher experimenteller und theoretischer Methoden setzt diese Arbeit auch einen Maßstab für die Untersuchung der elektronischen Struktur von 2D-Materialien im Allgemeinen. Basierend auf den Untersuchungen mit STS werden elektronische Quasiteilchen Interferenzen in quasi-1D Liniendefekten in Bismuthen entdeckt, die an Fabry-Pérot Zustände erinnern. Dabei wird gezeigt, dass diese Interferenzen auf eine Hybridisierung zweier Paare helikaler Grenzmoden über den Liniendefekt hinweg hinweisen, was mit einer (teilweisen) Aufhebung ihres topologischen Schutzes gegen elastische Ein-Teilchen-Rückstreuung einhergeht. Mit Hilfe optischer Spektroskopie wird die elektronische Zwei-Teilchen-Struktur von Bismuthen untersucht. Dabei ist trotz der Einzelschichtdicke eine starke optische, d.h. Zwei-Teilchen-, Antwort aufgrund der starken Elektron-Loch Coulomb-Wechselwirkungen zu beobachten. Der kombinierte experimentelle und theoretische Zugang (einschließlich GW Rechnungen und Lösungen der Bethe-Salpeter-Gleichung) erlaubt den Nachweis, dass zwei markante optische Übergänge Exzitonenanregungen sind, die von Valenzbändern von Bismuthen stammen, welche durch die Rashba-Wechselwirkung getrennt sind. Im weiteren Kontext könnte diese Entdeckung Anlass zu künftigen Experimenten sein, um die Zusammenhänge zwischen exzitonischer und topologischer Physik zu untersuchen. Schließlich werden erstmals die angeregten Leitungsbandzustände von Bismuthen mit Hilfe von trARPES energie- und impulsaufgelöst gemessen. Dabei ist es gelungen, die direkte und indirekte Bandlücke zu ermitteln und zudem den Effekt einer Ladungsträger induzierten Bandlücken-Renormalisierung zu beobachten. Darüber hinaus wird eine außergewöhnlich schnelle Relaxation angeregter Ladungsträger nachgewiesen, die durch das Vorhandensein einer quasi-metallischen Zustandsdichte aufgrund gekoppelter topologischer Randmoden an Domänengrenzen erklärt wird.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Rudolf Raul Albert StühlerORCiDGND
URN:urn:nbn:de:bvb:20-opus-320084
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Ralph Claessen, Prof. Dr. Friedrich Reinert, Prof. Dr. Peter Wahl
Date of final exam:2023/06/02
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-32008
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 539 Moderne Physik
GND Keyword:Topologischer Isolator; Rastertunnelmikroskop; Zweidimensionales Material
Tag:Photoelektronenspektroskopie; Siliziumcarbid
Bismuthene; exciton; helical edge states; honeycomb lattice; magnetic; quantum spin hall insulator; trARPES; two-dimensional topological insulator
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.20.-r Electron states at surfaces and interfaces / 73.20.At Surface states, band structure, electron density of states
Release Date:2023/06/26
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand