• Treffer 1 von 1
Zurück zur Trefferliste

Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-171947
  • Self-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self- organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atomsSelf-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self- organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atoms such that nanometer-wide and micrometer-long molecular stripes or other patterns are being formed on high-index planes. The formation of these patterns can be controlled by the initial surface orientation and adsorbate coverage. The patterns arrange self-organized in regular arrays by repulsive mechanical interactions over long distances accompanied by a significant enhancement of surface stress. We demonstrate this effect using the planar organic molecule PTCDA as adsorbate and Ag(10 8 7) and Ag(775)surfaces as substrate. The patterns are directly observed by STM, the formation of vicinal surfaces is monitored by highresolution electron diffraction, the microscopic surface morphology changes are followed by spectromicroscopy, and the macroscopic changes of surface stress are measured by a cantilever bending method. The in situ combination of these complementary techniques provides compelling evidence for elastic interaction and a significant stress contribution to long-range order and nanopattern formation.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Florian Pollinger, Stefan Schmitt, Dirk Sander, Zhen Tian, Jürgen Kirschner, Pavo Vrdoljak, Christoph Stadler, Florian Maier, Helder Marchetto, Thomas Schmidt, Achim Schöll, Eberhard Umbach
URN:urn:nbn:de:bvb:20-opus-171947
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):New Journal of Physics
Erscheinungsjahr:2017
Band / Jahrgang:19
Aufsatznummer:013019
Originalveröffentlichung / Quelle:New Journal of Physics (2017) 19:013019; https://doi.org/10.1088/1367-2630/aa55b8
DOI:https://doi.org/10.1088/1367-2630/aa55b8
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):SPA-LEED; STM; adsoption; patterning; physics; reconstruction; surface stress; vicinal surfaces
Datum der Freischaltung:05.02.2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung