• Treffer 1 von 2
Zurück zur Trefferliste

Toward Functionalized Ultrathin Oxide Films: The Impact of Surface Apical Oxygen

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-318914
  • Thin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO\(_{3}\) as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are presentThin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO\(_{3}\) as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are present even if the films are kept in an ultrahigh vacuum environment and not explicitly exposed to air, are shown to severely affect the intrinsic electronic structure of a transition metal oxide film. Their presence leads to the formation of an electronically dead surface layer but also alters the band filling and the electron correlations in the thin films. These findings highlight that it is important to take into account surface apical oxygen or—mutatis mutandis—the specific oxygen configuration imposed by a capping layer to predict the behavior of ultrathin films of transition metal oxides near the single unit-cell limit.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Judith Gabel, Matthias Pickem, Philipp Scheiderer, Lenart Dudy, Berengar Leikert, Marius Fuchs, Martin Stübinger, Matthias Schmitt, Julia Küspert, Giorgio Sangiovanni, Jan M. Tomczak, Karsten Held, Tien–Lin Lee, Ralph Claessen, Michael Sing
URN:urn:nbn:de:bvb:20-opus-318914
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Electronic Materials
ISSN:2199-160X
Erscheinungsjahr:2022
Band / Jahrgang:8
Heft / Ausgabe:4
Aufsatznummer:2101006
Originalveröffentlichung / Quelle:Advanced Electronic Materials 2022, 8(4):2101006. DOI: 10.1002/aelm.202101006
DOI:https://doi.org/10.1002/aelm.202101006
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):correlated oxides; electronic phase transitions; photoelectron spectroscopy; thin films; transition metal oxides
Datum der Freischaltung:16.08.2023
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International