• search hit 3 of 5
Back to Result List

Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC

Epitaxie und Spektroskopie zweidimensionaler Adatom Systeme: der elementare Topologische Isolator Indenene auf SiC

Please always quote using this URN: urn:nbn:de:bvb:20-opus-311662
  • Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising theseTwo-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene.show moreshow less
  • Zweidimensionale (2D) topologische Isolatoren sind eine neue Materialklasse mit vielversprechenden Eigenschaften für potenzielle zukünftige Anwendungen in Quantencomputern. Stanene stellt hier beispielsweise einen möglichen Kandidaten für einen topologischen Isolator dar. Diese 2D-Schicht besteht aus Sn-Atomen, angeordnet in einem hexagonalen Gitter. Allerdings weist dieses Gitter ein relativ fragiles Niederenergiespektrum und eine empfindliche Topologie auf. Um Stanene daher in der topologisch nicht-trivialen Phase experimentellZweidimensionale (2D) topologische Isolatoren sind eine neue Materialklasse mit vielversprechenden Eigenschaften für potenzielle zukünftige Anwendungen in Quantencomputern. Stanene stellt hier beispielsweise einen möglichen Kandidaten für einen topologischen Isolator dar. Diese 2D-Schicht besteht aus Sn-Atomen, angeordnet in einem hexagonalen Gitter. Allerdings weist dieses Gitter ein relativ fragiles Niederenergiespektrum und eine empfindliche Topologie auf. Um Stanene daher in der topologisch nicht-trivialen Phase experimentell realisieren zu können, muss ein geeignetes Substrat gefunden werden, das Stanene aufnehmen kann, ohne die topologischen Eigenschaften zu beeinträchtigen. Eine Heterostruktur aus einem SiC-Substrat mit einer Pufferschicht aus adsorbierten Gruppe-III Elementen stellt hier eine mögliche Lösung für dieses Problem dar. Im Hinblick darauf wurden für diese Arbeit 2D-Adatomsysteme aus Al und In epitaktisch auf SiC(0001) gewachsen und mittels Rastertunnelmikroskopie (engl.: scanning tunneling microscopy, STM) und Photoelektronenspektroskopie strukturell und spektroskopisch untersucht. Al-Schichten mit hoher Bedeckung \( (\Theta_{ML}\approx2\) ML\( ) \) weisen ungewöhnlich große, dreieckig und rechteckig geformte Oberflächeneinheitszellen auf. Hierbei wird das Beugungsmuster der niederenergetischen Elektronenbeugung (engl.: low-energy electron diffraction, LEED) mit der aus STM abgeleiteten Oberflächentopographie in Einklang gebracht. Eine andere Al-Rekonstruktion, die quasi-eindimensionale (1D) Al-Phase, zeigt eine gestreifte Oberflächenkorrugation, die ein Ergebnis der Verspannung durch die Fehlanpassung des Al-Gitters auf dem Substratgitter sein könnte. Es wird vorgeschlagen, dass Al-Atome in verschiedenen Oberflächenbereichen sowohl jeweils hexagonal-dichtgepackte als auch kubisch flächenzentrierte Gitterplätze einnehmen können. In Übergangsregionen zwischen beiden Bereichen erzeugt dies dicht gepackte Al-Atome, die wiederum die streifenartigen Korrugationen hervorrufen. Auf der Basis der bekannten Fischgrätenrekonstruktion von Au(111) wird ein erstes Strukturmodell vorgeschlagen, das gut mit strukturellen STM-Daten übereinstimmt. Letztendlich konnten jedoch durch thermische Behandlungen der Probe keine Phasen mit geringerer Bedeckung, das heißt insbesondere die Pufferschichtstruktur, erzeugt werden. In-Hochbedeckungsphasen \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) weisen ein ausgeprägtes metallisches Verhalten auf in der Rastertunnelspektroskopie (engl.: scanning tunneling spectroscopy, STS) und winkelaufgelösten Photoelektronenspektroskopie (engl.: angle-resolved photoelectron spectroscopy, ARPES). Zudem bilden diese Phasen eine \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \)-Oberflächenrekonstruktion aus. In all diesen Phasen folgen die Elektronen dem Modell der quasifreien Elektronen. Ähnlich zu den Al-Filmen konnte auch hier nach thermischen Behandlungen der Probe keine Pufferschichtstruktur erzeugt werden. Überraschenderweise tritt im Laufe dieser Untersuchung ein Dreiecksgitter aus In-Atomen mit einer \( (1\times1) \)-Periodizität auf, das bei \( K/K^{\prime} \) massive Dirac-artige Bänder in ARPES zeigt. Aufgrund der starken Ähnlichkeit mit der Graphene-Bandstruktur am Brillouinzonenrand, wird dieses neuartige Materialsystem \textit{Indenene} benannt. Eine umfangreiche theoretische Untersuchung legt die Entstehung eines elektronischen Honigwabennetzwerks offen, dass sich aufgrund von dreieckig angeordneten In \textit{p}-Orbitalen bildet. Durch starke atomare Spin-Bahn-Wechselwirkung und einen vergleichsweisen schwachen substratinduzierten Inversionssymmetriebruch in der Ebene, ist dieses Materialsystem topologisch nicht-trivial. In Indenene ist die Topologie eng mit einer Volumenobservablen, genauer die energieabhängige Ladungsakkumulationsequenz innerhalb der Oberflächeneinheitszelle, verknüpft. Diese Sequenz wird mittels STS experimentell ausgenutzt, um den topologisch nicht-trivialen Charakter zu bestätigen. Die Bandlücke bei \( K/K^{\prime} \), charakteristisch für massive Dirac-Fermionen, wird mittels ARPES auf ungefähr 125 meV abgeschätzt. Weitere Untersuchungen basierend auf stehenden Röntgenwellen, STM, und LEED bestätigen die strukturellen Eigenschaften von Indenene. Dementsprechend wird in dieser Arbeit dasWachstum und auch die Charakterisierung des neuartigen Quanten Spin Hall Isolators Indenene vorgestellt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Maximilian Josef Xaver BauernfeindGND
URN:urn:nbn:de:bvb:20-opus-311662
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Jörg Schäfer, Prof. Dr. Matthias Bode
Date of final exam:2023/02/03
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-31166
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 539 Moderne Physik
GND Keyword:Dreiecksgitter; Monoschicht; Indium; Topologischer Isolator; Siliciumcarbid; ARPES; Rastertunnelmikroskop
Tag:Monolage; STM; Siliziumkarbid
Monolayer; Silicon carbide; Triangular lattice
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.20.-r Electron states at surfaces and interfaces / 73.20.At Surface states, band structure, electron density of states
Release Date:2023/04/19
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand