• search hit 1 of 8
Back to Result List

Deep Learning for Geospatial Environmental Regression

Deep Learning für Regressionsmodelle mit georäumlichen Umweltdaten

Please always quote using this URN: urn:nbn:de:bvb:20-opus-313121
  • Environmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues’ substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure aEnvironmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues’ substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure a model’s generalizability. This work focuses on the following environmental ML tasks: Regarding air pollution, land use regression (LUR) estimates air pollutant concentrations at locations where no measurements are available based on measured locations and each location’s land use (e.g., industry, streets). For LUR, this work uses data from London (modeled) and Zurich (measured). Concerning climate change, a common ML task is model output statistics (MOS), where a climate model’s output for a study area is altered to better fit Earth observations and provide more accurate climate data. This work uses the regional climate model (RCM) REMO and Earth observations from the E-OBS dataset for MOS. Another task regarding climate is grain size distribution interpolation where soil properties at locations without measurements are estimated based on the few measured locations. This can provide climate models with soil information, that is important for hydrology. For this task, data from Lower Franconia is used. Such environmental ML tasks commonly have a number of properties: (i) geospatiality, i.e., their data refers to locations relative to the Earth’s surface. (ii) The environmental variables to estimate or predict are usually continuous. (iii) Data can be imbalanced due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related potential target variables can be available per location, since measurement devices often contain different sensors. (v) Labels are spatially often only sparsely available since conducting measurements at all locations of interest is usually infeasible. These properties present challenges but also opportunities when designing ML methods for such tasks. In the past, environmental ML tasks have been tackled with conventional ML methods, such as linear regression or random forests (RFs). However, the field of ML has made tremendous leaps beyond these classic models through deep learning (DL). In DL, models use multiple layers of neurons, producing increasingly higher-level feature representations with growing layer depth. DL has made previously infeasible ML tasks feasible, improved the performance for many tasks in comparison to existing ML models significantly, and eliminated the need for manual feature engineering in some domains due to its ability to learn features from raw data. To harness these advantages for environmental domains it is promising to develop novel DL methods for environmental ML tasks. This thesis presents methods for dealing with special challenges and exploiting opportunities inherent to environmental ML tasks in conjunction with DL. To this end, the proposed methods explore the following techniques: (i) Convolutions as in convolutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial data. (ii) Posing the problems as regression tasks to estimate the continuous variables. (iii) Density-based weighting to improve estimation performance for rare and extreme events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi–supervised learning to cope with label sparsity. Using these techniques, this thesis considers four research questions: (i) Can air pollution be estimated without manual feature engineering? This is answered positively by the introduction of the CNN-based LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can colocated pollution data improve spatial air pollution models? Multi-task learning for LUR is developed for this, showing potential for improvements with colocated data. (iii) Can DL models improve the quality of climate model outputs? The proposed DL climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised training of multilayer perceptrons (MLPs) for grain size distribution interpolation is presented, which can provide improved input data. (iv) Can DL models be taught to better estimate climate extremes? To this end, density-based weighting for imbalanced regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, improving climate extremes estimation. These methods show how especially DL techniques can be developed for environmental ML tasks with their special characteristics in mind. This allows for better models than previously possible with conventional ML, leading to more accurate assessment and better understanding of the state of our environment.show moreshow less
  • Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen ausgelöst, den Zustand unserer Umwelt zu untersuchen. Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben, z. B. werden die Datensätze aufgeteilt (Training, Validation, Test),Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen ausgelöst, den Zustand unserer Umwelt zu untersuchen. Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben, z. B. werden die Datensätze aufgeteilt (Training, Validation, Test), Hyperparameter werden auf den Validierungsdaten optimiert, und die Metriken auf den Testdaten messen die Generalisierungsfähigkeit eines Modells, aber sie befassen sich mit Umweltdaten. Diese Arbeit konzentriert sich auf die folgenden Umwelt-ML-Aufgaben: In Bezug auf Luftverschmutzung schätzt Land Use Regression (LUR) die Luftschadstoffkonzentration an Orten, an denen keine Messungen verfügbar sind auf Basis von gemessenen Orten und der Landnutzung (z. B. Industrie, Straßen) der Orte. Für LUR werden in dieser Arbeit Daten aus London (modelliert) und Zürich (gemessen) verwendet. Im Zusammenhang mit dem Klimawandel ist eine häufige ML-Aufgabe Model Output Statistics (MOS), bei der die Ausgaben eines Klimamodells so angepasst werden, dass sie mit Erdbeobachtungen besser übereinstimmen. Dadurch werden genauere Klimadaten erzeugt. Diese Arbeit verwendet das regionale Klimamodell REMO und Erdbeobachtungen aus dem E-OBS-Datensatz für MOS. Eine weitere Aufgabe im Zusammenhang mit dem Klima ist die Interpolation von Korngrößenverteilungen. Hierbei werden Bodeneigenschaften an Orten ohne Messungen auf Basis von wenigen gemessenen Orten geschätzt, um Klimamodelle mit Bodeninformationen zu versorgen, die für die Hydrologie wichtig sind. Für diese Aufgabe werden in dieser Arbeit Bodenmessungen aus Unterfranken herangezogen. Solche Umwelt-ML-Aufgaben haben oft eine Reihe von Eigenschaften: (i) Georäumlichkeit, d. h. ihre Daten beziehen sich auf Standorte relativ zur Erdoberfläche. (ii) Die zu schätzenden oder vorherzusagenden Umweltvariablen sind normalerweise kontinuierlich. (iii) Daten können unbalanciert sein, was auf relativ seltene Extremereignisse (z. B. extreme Niederschläge) zurückzuführen ist. (iv) Pro Standort können mehrere verwandte potenzielle Zielvariablen verfügbar sein, da Messgeräte oft verschiedene Sensoren enthalten. (v) Zielwerte sind räumlich oft nur spärlich vorhanden, da die Durchführung von Messungen an allen gewünschten Orten in der Regel nicht möglich ist. Diese Eigenschaften stellen eine Herausforderung, aber auch eine Chance bei der Entwicklung von ML-Methoden für derlei Aufgaben dar. In der Vergangenheit wurden ML-Aufgaben im Umweltbereich mit konventionellen ML-Methoden angegangen, wie z. B. lineare Regression oder Random Forests (RFs). In den letzten Jahren hat der Bereich ML jedoch durch Deep Learning (DL) enorme Fortschritte über diese klassischen Modelle hinaus gemacht. Bei DL verwenden die Modelle mehrere Schichten von Neuronen, die mit zunehmender Schichtungstiefe immer abstraktere Merkmalsdarstellungen erzeugen. DL hat zuvor undurchführbare ML-Aufgaben realisierbar gemacht, die Leistung für viele Aufgaben im Vergleich zu bestehenden ML-Modellen erheblich verbessert und die Notwendigkeit für manuelles Feature-Engineering in einigen Bereichen aufgrund seiner Fähigkeit, Features aus Rohdaten zu lernen, eliminiert. Um diese Vorteile für ML-Aufgaben in der Umwelt nutzbar zu machen, ist es vielversprechend, geeignete DL-Methoden für diesen Bereich zu entwickeln. In dieser Arbeit werden Methoden zur Bewältigung der besonderen Herausforderungen und zur Nutzung der Möglichkeiten von Umwelt-ML-Aufgaben in Verbindung mit DL vorgestellt. Zu diesem Zweck werden in den vorgeschlagenen Methoden die folgenden Techniken untersucht: (i) Faltungen wie in Convolutional Neural Networks (CNNs), um wiederkehrende räumliche Muster in Geodaten zu nutzen. (ii) Probleme als Regressionsaufgaben stellen, um die kontinuierlichen Variablen zu schätzen. (iii) Dichtebasierte Gewichtung zur Verbesserung der Schätzungen bei seltenen und extremen Ereignissen. (iv) Multi-Task-Lernen, um mehrere verwandte Zielvariablen zu nutzen. (v) Halbüber- wachtes Lernen, um auch mit wenigen bekannten Zielwerten zurechtzukommen. Mithilfe dieser Techniken werden in der Arbeit vier Forschungsfragen untersucht: (i) Kann Luftverschmutzung ohne manuelles Feature Engineering geschätzt werden? Dies wird durch die Einführung des CNN-basierten LUR-Modells MapLUR sowie der automatisierten LUR–Lösung OpenLUR positiv beantwortet. (ii) Können kolokalisierte Verschmutzungsdaten räumliche Luftverschmutzungsmodelle verbessern? Hierfür wird Multi-Task-Learning für LUR entwickelt, das Potenzial für Verbesserungen mit kolokalisierten Daten zeigt. (iii) Können DL-Modelle die Qualität der Ausgaben von Klimamodellen verbessern? Die vorgeschlagene DL-MOS-Architektur ConvMOS demonstriert das. Zusätzlich wird halbüberwachtes Training von Multilayer Perceptrons (MLPs) für die Interpolation von Korngrößenverteilungen vorgestellt, das verbesserte Eingabedaten liefern kann. (iv) Kann man DL-Modellen beibringen, Klimaextreme besser abzuschätzen? Zu diesem Zweck wird eine dichtebasierte Gewichtung für unbalancierte Regression (DenseLoss) vorgeschlagen und auf die DL-Architektur ConvMOS angewendet, um die Schätzung von Klimaextremen zu verbessern. Diese Methoden zeigen, wie speziell DL-Techniken für Umwelt-ML-Aufgaben unter Berücksichtigung ihrer besonderen Eigenschaften entwickelt werden können. Dies ermöglicht bessere Modelle als konventionelles ML bisher erlaubt hat, was zu einer genaueren Bewertung und einem besseren Verständnis des Zustands unserer Umwelt führt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Michael SteiningerORCiDGND
URN:urn:nbn:de:bvb:20-opus-313121
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Informatik
Referee:Prof. Dr. Andreas Hotho, Prof. Dr. Frank Puppe
Date of final exam:2023/04/25
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-31312
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
GND Keyword:Deep learning; Modellierung; Umwelt; Neuronales Netz; Maschinelles Lernen; Geoinformationssystem
Tag:Environmental; Geospatial; Regression
Release Date:2023/05/08
Licence (German):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International