• search hit 8 of 17
Back to Result List

Regional differences in tight junction protein expression in the blood−DRG barrier and their alterations after nerve traumatic injury in rats

Please always quote using this URN: urn:nbn:de:bvb:20-opus-285029
  • The nervous system is shielded by special barriers. Nerve injury results in blood–nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood–DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injuryThe nervous system is shielded by special barriers. Nerve injury results in blood–nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood–DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injury (CCI). Cldn5, Cldn12, and Tjp1 (rats) mRNA were downregulated 1 week after traumatic nerve injury. Claudin-1 immunoreactivity (IR) found in the EPN, claudin-19-IR in the FRR, and ZO-1-IR in FRR-EPN were unaltered after CCI. However, laser-assisted, vessel specific qPCR, and IR studies confirmed a significant loss of claudin-5 in the NRR. The NRR was three-times more permeable compared to the FRR for high and low molecular weight markers. NRR permeability was not further increased 1-week after CCI, but significantly more CD68\(^+\) macrophages had migrated into the NRR. In summary, NRR and FRR are different in naïve rats. Short-term traumatic nerve injury leaves the already highly permeable BDB in the NRR unaltered for small and large molecules. Claudin-5 is downregulated in the NRR. This could facilitate macrophage invasion, and thereby neuronal sensitisation and hyperalgesia. Targeting the stabilisation of claudin-5 in microvessels and the BDB barrier could be a future approach for neuropathic pain therapy.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Thomas J. Lux, Xiawei Hu, Adel Ben-Kraiem, Robert Blum, Jeremy Tsung-Chieh Chen, Heike L. Rittner
URN:urn:nbn:de:bvb:20-opus-285029
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Klinische Neurobiologie
Medizinische Fakultät / Klinik und Poliklinik für Anästhesiologie (ab 2004)
Language:English
Parent Title (English):International Journal of Molecular Sciences
ISSN:1422-0067
Year of Completion:2019
Volume:21
Issue:1
Article Number:270
Source:International Journal of Molecular Sciences (2020) 21:1, 270. https://doi.org/10.3390/ijms21010270
DOI:https://doi.org/10.3390/ijms21010270
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:claudin-5; dorsal root ganglion; nerve injury; neuropathic pain; tight junction
Release Date:2023/06/12
Date of first Publication:2019/12/31
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International