• search hit 2 of 6
Back to Result List

Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting

Please always quote using this URN: urn:nbn:de:bvb:20-opus-241781
  • As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that theAs one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Malik Salman Haider, Taufiq Ahmad, Mengshi Yang, Chen Hu, Lukas Hahn, Philipp Stahlhut, Jürgen Groll, Robert Luxenhofer
URN:urn:nbn:de:bvb:20-opus-241781
Document Type:Journal article
Faculties:Fakultät für Chemie und Pharmazie / Institut für Funktionsmaterialien und Biofabrikation
Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Language:English
Parent Title (English):Gels
ISSN:2310-2861
Year of Completion:2021
Volume:7
Issue:3
Article Number:78
Source:Gels (2021) 7:3, 78. https://doi.org/10.3390/gels7030078
DOI:https://doi.org/10.3390/gels7030078
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Tag:bio-printability; cyto-compatibility; poly(2-ethyl-2-oxazoline); shape fidelity; shear thinning
Release Date:2023/05/24
Date of first Publication:2021/06/24
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International