Investigating the Molecular Mechanism of Receptor Activation at Muscarinic Receptors by Means of Pathway-Specific Dualsteric Ligands and Partial Agonists

Molekulare Grundlagen der Rezeptoraktivierung von muskarinergen Acetylcholin Rezeptoren durch dualstere Liganden und Partialagonisten

Please always quote using this URN: urn:nbn:de:bvb:20-opus-173729
  • G protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenousG protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenous ligand binding region and thus it is challenging until now to selectively activate a single receptor subtype. A well accepted method to study ligand binding, dynamic receptor activation and downstream signaling is the fluorescence resonance energy transfer (FRET) application. Here, there relative distance between two fluorophores in close proximity (<10 nm) can be monitored in a dynamic manner. The perquisite for that is the spectral overlap of the emission spectrum of the first fluorophore with the excitation spectrum of the second fluorophore. By inserting two fluorophores into the molecular receptor structure receptor FRET sensors can serve as a powerful tool to study dynamic receptor pharmacology. Dualsteric Ligands consist of two different pharmacophoric entities and are regarded as a promising ligand design for future drug development. The orthosteric part interacts with high affinity with the endogenous ligand binding region whereas the allosteric part binds to a different receptor region mostly located in the extracellular vestibule. Both moieties are covalently linked. Dualsteric ligands exhibit a dynamic ligand binding. The dualsteric binding position is characterized by a simultaneous binding of the orthosteric and allosteric moiety to the receptor and thus by receptor activation. In the purely allosteric binding position no receptor activation can be monitored. In the present work the first receptor FRET sensor for the muscarinic subtype 1 (M1) was generated and characterized. The M1-I3N-CFP sensor showed an unaltered physiological behavior as well as ligand and concentration dependent responses. The sensor was used to characterize different sets of dualsteric ligands concerning their pharmacological properties like receptor activation. It was shown that the hybrids consisting of the synthetic full agonist iperoxo and the positive allosteric modulator of BQCA type is very promising. Furthermore, it was shown for orthosteric as well as dualsteric ligands that the degree of receptor activation is highly dependent on the length of and the chemical properties of the linker moiety. For dualsteric ligands a bell-shaped activation characteristic was reported for the first time, suggesting that there is an optimal linker length for dualsteric ligands. The gained knowledge about hybrid design was then used to generate and characterize the first photo-switchable dualsteric ligand. The resulting hybrids were characterized with the M1-I3N-CFP sensor and were described as photo-inactivatable and dimmable. In addition to the ligand characterization the ligand application methodology was further developed and improved. Thus, a fragment-based screening approach for dualsteric ligands was reported in this study for the first time. With this approach it is possible to investigate dualsteric ligands in greater detail by applying either single ligand fragments alone or in a mixture of building blocks. These studies revealed the insights that the effect of dualsteric ligands on a GPCR can be rebuild by applying the single building blocks simultaneously. The fragment-based screening provides high potential for the molecular understanding of dualsteric ligands and for future screening approaches. Next, a further development of the standard procedure for measuring FRET by sensitized emission was performed. Under normal conditions single cell FRET is measured on glass coverslips. After coating the coverslips surface with a 20 nm thick gold layer an increased FRET efficiency up to 60 % could be reported. This finding was validated in different approaches und in different configurations. This FRET enhancement by plasmonic surfaces was until yet unreported in the literature for physiological systems and make FRET for future projects even more powerful.show moreshow less
  • G Protein gekoppelte Rezeptoren (GPCRs) bilden die größte Proteinfamilie, die im humanen Genom verschlüsselt ist. Sie sind nicht nur die Zielstruktur für eine Vielzahl von derzeit gebräuchlichen Medikamenten, sondern gehören auch zu den vielversprechendsten Therapieansätzen für die moderne Medikamentenentwicklung. Muskarinerge Acetylcholin Rezeptoren (mAChRs) gehören zu den aminergen Klasse A GPCRs und sind bereits heute von klinischer Relevanz. Die muskarinerge Rezeptorfamilie wird von fünf Subtypen gebildet, die sich besonders durch eine hoheG Protein gekoppelte Rezeptoren (GPCRs) bilden die größte Proteinfamilie, die im humanen Genom verschlüsselt ist. Sie sind nicht nur die Zielstruktur für eine Vielzahl von derzeit gebräuchlichen Medikamenten, sondern gehören auch zu den vielversprechendsten Therapieansätzen für die moderne Medikamentenentwicklung. Muskarinerge Acetylcholin Rezeptoren (mAChRs) gehören zu den aminergen Klasse A GPCRs und sind bereits heute von klinischer Relevanz. Die muskarinerge Rezeptorfamilie wird von fünf Subtypen gebildet, die sich besonders durch eine hohe Sequenzidentität in der endogenen Ligandenbindestelle (orthostere Bindestelle) auszeichnen. Aus diesem Grund ist es mit den herkömmlich verwendeten Medikamenten nicht möglich, einen ganz bestimmten Subtyp zu therapieren, ohne auch andere Subtypen zu beeinflussen und so unerwünschte Nebenwirkungen zu erhalten. Eine Möglichkeit Ligandenbindung, dynamische Rezeptoraktivierung oder Signalweiterleitung von GPCRs nach pharmakologischen Gesichtspunkten zu charakterisieren, stellt der Floreszenz Resonanz Energietransfer (FRET) dar. Mit Hilfe dieser Methode kann über kleine Entfernungen (<10 nm) die relative Orientierung von zwei Fluorophoren mit überlappenden Spektralbereichen mit hoher zeitlicher Auflösung verfolgt werden. Integriert man das Fluorophorpaar mit Hilfe gentechnischer Methoden in die Molekülstruktur des Rezeptors, kann man dessen Konformationsänderung bzw. Aktivierung infolge einer Ligandenbindung aufzeichnen. Dualstere Liganden sind eine Substanzklasse von hohem zukünftigen klinischen Potential und zeichnen sich durch die Verknüpfung mehrerer pharmakologisch aktiver Untereinheiten aus. Der orthostere Molekülteil interagiert mit der endogenen Ligandenbindestelle und der allostere Molekülteil interagiert mit einem zweiten Rezeptorabschnitt, der häufig in den extrazellulären Schlaufen des Rezeptors zu finden ist. Diese allosteren Bindestellen zeichnet sich durch eine vergleichsweise geringe Sequenzidentität aus, weswegen allostere Modulatoren auch selektiv an Subtypen binden können. Aufgrund des Aufbaus können dualstere Liganden auf vielfältige Weise mit dem Rezeptor interagieren und dieser Bindemechanismus wurde als dynamische Ligandenbindung beschrieben. Zum einen können beide Molekülteile gleichzeitig mit dem Rezeptor interagieren und ihn aktivieren (dualsterer Bindemodus) und zum anderen findet man einen rein allosteren Bindemodus, der den Rezeptor nicht aktiviert. Der orthostere Molekülteil ist vor allem für die Rezeptoraktivierung zuständig, die sich durch eine hohe Affinität auszeichnet und der allostere Molekülteil kann selektive Rezeptorinteraktionen vermitteln. Da dualstere Moleküle immer Eigenschaften beider Untereinheiten besitzen, werden dualstere Liganden als sehr vielversprechend erachtet, zukünftig subtypselektive Medikamente darzustellen. In dieser Arbeit wurde der erste Rezeptor FRET Sensor für den muskarinergen Subtyp 1 (M1) beschrieben und es konnte gezeigt werden, dass sich dieser Rezeptorsensor in seiner physiologischen Funktion nicht von dem wild Typ unterscheidet. Des Weiteren können mit Hilfe dieses Sensors liganden- und konzentrationsabhängige Rezeptorantworten aufgezeichnet werden. Der M1-I3N-CFP wurde dazu genutzt verschiedene Reihen dualsterer Liganden zu charakterisieren und auf ihre aktivierenden Eigenschaften bezüglich des M1 zu testen. Es wurde gezeigt, dass die Kombination aus dem synthetischen und hochpotenten Agonisten Iperoxo als Orthoster und dem in der Literatur als M1 selektiven positiven allosteren Modulator beschriebenen BQCA als Alloster sehr vielversprechend ist. Es konnte gezeigt werden, dass die rezeptoraktivierenden Eigenschaften sowohl von orthosteren wie auch von dualsteren Liganden stark von der Linkerlänge abhängig sind. Für dualstere Liganden konnte so ein glockenförmiger Zusammenhang zwischen Linkerlänge und Rezeptoraktivierung herausgearbeitet werden. Des Weiteren wurde gezeigt, dass bestimmte Hybride, die den M1 aktivieren, an anderen Subtypen keine Effekte hervorrufen und somit als subtypselektiv beschrieben werden können. Im Anschluss wurde mit Hilfe des gewonnenen Wissens über Iperoxo/BQCA Hybride, das Moleküldesign der dualsteren Liganden weiterentwickelt. So wurden in dieser Arbeit die ersten photo-schaltbaren bzw. photo-dimmbaren dualsteren Liganden beschrieben und charakterisiert. Des Weiteren wurde in dieser Arbeit die herkömmliche Charakterisierung von dualsteren Liganden weiterentwickelt. Es konnte zum ersten Mal gezeigt werden, dass es möglich ist, die Aktivierung eines Rezeptors durch einen dualsteren Liganden nachzustellen, indem die einzelnen Fragmente des ursprünglichen Liganden gleichzeitig appliziert werden. Diese auf Fragmenten basierende Charakterisierung ist die erste Anwendung dieser Art und birgt großes Potential für die zukünftige Suche nach neuen Wirkstoffen. Neben der Untersuchung von pharmakologischen Schwerpunkten wurde auch die Weiterentwicklung der Rezeptor FRET Methodik beschrieben. Die herkömmliche Anwendung der Rezeptor FRET Sensoren geschieht auf Objektträgern aus Quarzglas. In dieser Arbeit wurde diese Anwendung dahingehend weiterentwickelt, dass die Objektträger mit einer 20 nm dicken Goldschicht beschichtet wurden, um den Einfluss von Plasmonoberflächen auf physiologisch relevante FRET Messungen zu untersuchen. Es konnte gezeigt werden, dass mit Hilfe der Goldbeschichtung und in Abhängigkeit des Versuchsaufbaus die Energietransfereffizienz um bis zu 60 % gesteigert werden konnte. Diese Entdeckung zeigt Potential zukünftig die FRET-Reichweite zu erhöhen und so bisher nicht charakterisierbare Sachverhalte aufklären zu können.show moreshow less
Metadaten
Author: Michael KaukORCiD
URN:urn:nbn:de:bvb:20-opus-173729
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Medizinische Fakultät / Institut für Pharmakologie und Toxikologie
Referee:Prof. Dr. Carsten Hoffmann
Date of final exam:2018/11/23
Language:English
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 572 Biochemie
GND Keyword:G-Protein gekoppelte Rezeptoren; Muscarinrezeptor
Tag:Dualstere Liganden
Dualsteric Ligands; Partial Agonists; Partialagonismus
Release Date:2018/12/10
Note:
Online-Version enthält nicht den Appendix (Volltexte der Originalveröffentlichungen der Zeitschriftenaufsätze)
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International