Soft X-ray Spectroscopic Study of Electronic and Magnetic Properties of Magnetic Topological Insulators
Spektroskopische Untersuchung der elektronischen und magnetischen Eigenschaften magnetischer topologischer Isolatoren mit weicher Röntgenstrahlung
Please always quote using this URN: urn:nbn:de:bvb:20-opus-303786
- After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ – a new class of quantum materials characterized by their unique surface electronic properties – the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence ofAfter the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ – a new class of quantum materials characterized by their unique surface electronic properties – the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary. V- and Cr-doped (Bi,Sb)$_2$Te$_3$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)$_2$Te$_3$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the $d$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te $5p$ states for the ferromagnetism in (Bi, Sb)$_2$Te$_3$ and favor magnetic coupling mechanisms involving $pd$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the $3d$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity $3d$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a $pd$-exchange interaction scenario. Our findings reveal important clues to designing higher $T_{\text{C}}$ MTIs. Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi$_2$Te$_3$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi$_2$Te$_3$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties. The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi$_6$Te$_{10}$, where we have uncovered robust ferromagnetism with $T_{\text{C}} \approx 12$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi$_6$Te$_{10}$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the $d^5$ configuration to the ground state, resulting in a $d$-shell electron occupation $n_d = 5.31$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA$+U$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties. We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future.…
- Nach der Entdeckung von dreidimensionalen topologischen Isolatoren (TIs), einer neuen Klasse von Quantenmaterialien, die sich durch ihre einzigartigen elektronischen Oberflächeneigenschaften auszeichnen – und zu denen beispielsweise die Tetradymit-Di\-chal\-kogenide Bi2Se3, Bi2Te3 und Sb2Te3 gehören –, gerieten zunehmend topologische Zustände, deren Eigenschaften von starken elektronische Korrelationen und Magnetismus bestimmt werden, in den Fokus aktueller Festkörperforschung. Eine wichtige Materialklasse bilden die magnetischen TI (MTI), dieNach der Entdeckung von dreidimensionalen topologischen Isolatoren (TIs), einer neuen Klasse von Quantenmaterialien, die sich durch ihre einzigartigen elektronischen Oberflächeneigenschaften auszeichnen – und zu denen beispielsweise die Tetradymit-Di\-chal\-kogenide Bi2Se3, Bi2Te3 und Sb2Te3 gehören –, gerieten zunehmend topologische Zustände, deren Eigenschaften von starken elektronische Korrelationen und Magnetismus bestimmt werden, in den Fokus aktueller Festkörperforschung. Eine wichtige Materialklasse bilden die magnetischen TI (MTI), die einen quantenanomalen Hall-Effekt (QAH) aufweisen, d.h. eine dissipationsfreie, quantisierte Randzustandsleitfähigkeit in Abwesenheit eines externen Magnetfeldes, die aus dem Zusammenspiel von Ferromagnetismus und einer topologisch nicht-trivialen Bandstruktur resultiert. Die beispiellosen Möglichkeiten, die solche neuen, exotischen Materialien bieten, eröffnen einen neuen Weg für die Entwicklung von Elektronik mit geringer Verlustleistung, sowie von Spintronik und von Quanten\-com\-pu\-tern. Das Hauptproblem des QAH-Effekts ist jedoch die extrem niedrige Temperatur, bei der er auftritt, was seine praktische Anwendung einschränkt. Um dieses Problem zu lösen, ist ein umfassendes Verständnis des mikroskopischen Ursprungs des zugrunde liegenden Ferromagnetismus erforderlich. V- und Cr-dotiertes (Bi,Sb)2Te3 sind die beiden prototypischen Systeme, die als Realisierungen des QAH-Zustands umfassend untersucht wurden. Die Suche nach mikro\-skopischen Unterschieden zwischen den stark korrelierten V- und Cr-Dotieratomen würde helfen, ein relevantes Modell für die ferromagnetische Kopplung zu finden und schließlich eine bessere Kontrolle des QAH-Effekts in diesen Systemen zu ermöglichen. Daher konzentriert sich diese Arbeit zunächst auf die V- und Cr-dotierten (Bi,Sb)2Te3-Systeme, um diese Unterschiede besser zu verstehen. Unter Ausnutzung der einzigartigen Möglich\-keiten der Röntgenabsorptionsspektroskopie und des magnetischen Zirkulardichroismus (XAS/XMCD), kombiniert mit fortschrittlicher Modellierung auf der Grundlage der Multiplett-Liganden-Feld-Theorie (MLFT), geben wir einen detaillierten mi\-kro\-sko\-pi\-schen Einblick in die lokalen elektronischen und magnetischen Eigenschaften dieser Systeme und bestimmen mikroskopische Parameter, die für den Vergleich mit theoretischen Modellen entscheidend sind. Wir finden einen stark kovalenten Grundzustand, der von der Überlagerung von Ein- und Zwei-Te-Liganden-Loch-Konfigurationen dominiert wird, mit einem vernachlässigbaren Beitrag einer rein ionischen 3+ Konfiguration. Unsere Ergebnisse weisen auf die Bedeutung der Te 5p$−Zustände für den Ferromagnetismus in(Bi,Sb)\(2Te3 hin und deuten auf magnetische Kopplungsmechanismen mit pd-Austausch hin. Unter Verwendung modernster Dichtefunktionaltheorie (DFT)-Rechnungen in Kombination mit XMCD und resonanter Photoelektronenspektroskopie (resPES) demonstrieren wir die wichtige Rolle der 3d-Dotieratomzustände bei der Vermittlung der magnetischen Austauschkopplung. Unsere Berechnungen zeigen, dass die Art und Stärke der Austauschkopplung mit der 3d-Schalenbesetzung der Dotieratome variiert. Wir stellen eine Abschwächung der ferromagnetischen Eigenschaften bei Erhöhung der Dotierungskonzentration fest, ebenso wie bei Substitution von Bi an der Sb-Stelle. Schließlich beschreiben wir qualitativ den Ursprung der induzierten magnetischen Momente an den Te- und Sb-Stellen im Wirtsgitter und diskutieren ihre Rolle bei der Vermittlung eines robusten Ferromagnetismus auf der Grundlage des pd$−Austauschwechselwirkungsszenarios. Unsere Ergebnisse liefern wichtige Anhaltspunkte für die Entwicklung von MTIsmithöherem\(TC. Seltenerdionen weisen typischerweise größere magnetische Momente auf als Über\-gangsmetall-Ionen und legen daher die Öffnung einer größeren Austausch\-lücke in den Dirac-Ober\-flächenzuständen von TIs nahe, was für den Hochtemperatur-QAH-Effekt günstig ist. Daher haben wir uns weiter auf Eu-dotiertes Bi2Te3 konzentriert und untersucht, ob die Bedingungen für die Bildung einer substantiellen Lücke in diesem System gegeben sind, indem wir spektroskopische und Bulk-Charakterisierungsmethoden mit theoretischen Berechnungen kombiniert haben. Für alle untersuchten Eu\hyp{}Dotierungs\-kon\-zen\-trationen zeigt unsere atomare Multiplettanalyse der M4,5-Röntgenabsorptions- und der magnetischen Zirkulardichroismus-Spektren eine Eu2+-Valenz, im Gegensatz zu den meisten anderen Seltenen Erden, und bestätigt ein großes magnetisches Moment. Bei Temperaturen unter 10 K zeigt die Magnetometrie das Einsetzen einer antiferromagnetischen Ordnung an. Dies steht in guter Übereinstimmung mit DFT-Ergebnissen, die AFM-Wechselwirkungen zwischen den Eu-Dotieratomen aufgrund des direkten Überlapps der Wellenfunktionen der Dotieratome vorhersagen. Unsere Ergebnisse unterstützen die Annahme von Antiferromagnetismus, der mit topologischen Oberflächenzuständen in mit Seltenerdatomen dotiertem Bi2Te3 koexistiert, und bestätigen das Potenzial einer solchen Dotierung, einen antiferromagnetischen TI mit exotischen Quanteneigenschaften zu erzeugen. Dotierung führt zu einer für den QAH-Effekt nachteiligen Unordnung, die in stöchiometrischen, gut geordneten magnetischen Verbindungen vermieden werden kann. Im letzten Teil der Arbeit haben wir den kürzlich entdeckten, intrinsischen magnetischen TI (IMTI) MnBi6Te10 untersucht, in dem wir robusten Ferromagnetismus mit TC≈12 K beobachtet und seinen Ursprung mit Mn/Bi-Antilagendefekte (Substitution von Mn auf Bi-Plätzen und umgekehrt) in Verbindung gebracht haben. Unsere Messungen zeigen eine magnetisch intakte Oberfläche mit einem großen Moment und mit FM-Eigenschaften, die denen im Inneren des Materials ähnlich sind, was MnBi6Te10 zu einem vielversprechenden Kandidaten für den QAH-Effekt bei erhöhten Temperaturen macht. Darüber hinaus haben wir mit Hilfe eines fortgeschrittenen ab initio MLFT-Ansatzes die Grundzustandseigenschaften von Mn bestimmt und einen vorherrschenden Beitrag der d5-Konfiguration zum Grundzustand festgestellt, was zu einer d-Schalen-Elektronenbesetzung nd=5.31 und einem großen magnetischen Moment führt, in hervorragender Übereinstimmung mit unseren DFT-Berechnungen und den Daten der Magnetometrie. Unsere Ergebnisse, kombiniert mit den auf DFT-GGA+U basierenden First-Principle-Berechnungen, die von Kollegen durchgeführt wurden, deuten darauf hin, dass sorgfältig herbeigeführte Antilagendefekte eine entscheidende Rolle bei der Erzielung einer robusten langreichweitigen FM-Ordnung spielen und daher der Schlüssel zur Er\-zie\-lung verbesserter QAH\hyp{}Eigenschaften sein könnten. Wir erwarten, dass unsere Ergebnisse zu einem besseren Verständnis von MTIs beitragen werden, was wiederum die Erhöhung der Temperatur des QAH-Effekts und damit die Realisierung von Low-Power-Elektronik in der Zukunft erleichtern wird.…
Author: | Abdul-Vakhab TcakaevORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:20-opus-303786 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Physik und Astronomie |
Faculties: | Fakultät für Physik und Astronomie / Physikalisches Institut |
Referee: | Prof. Dr. Vladimir HinkovORCiD |
Date of final exam: | 2023/03/09 |
Language: | English |
Year of Completion: | 2023 |
DOI: | https://doi.org/10.25972/OPUS-30378 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik |
GND Keyword: | Topologischer Isolator; Röntgenspektroskopie |
Tag: | XMCD; topological insulators; x-ray spectroscopy |
PACS-Classification: | 70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Release Date: | 2023/03/20 |
Licence (German): | CC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International |