Towards bio-inspired robots for underground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-230309
  • Dessert organisms like sandfish lizards (SLs) bend and generate thrust in granular mediums to scape heat and hunt for prey [1]. Further, SLs seems to have striking capabilities to swim in undulatory form keeping the same wavelength even in terrains with different volumetric densities, hence behaving as rigid bodies. This paper tries to recommend new research directions for planetary robotics, adapting principles of sand swimmers for improving robustness of surface exploration robots. First, we summarize previous efforts on bio-inspired hardwareDessert organisms like sandfish lizards (SLs) bend and generate thrust in granular mediums to scape heat and hunt for prey [1]. Further, SLs seems to have striking capabilities to swim in undulatory form keeping the same wavelength even in terrains with different volumetric densities, hence behaving as rigid bodies. This paper tries to recommend new research directions for planetary robotics, adapting principles of sand swimmers for improving robustness of surface exploration robots. First, we summarize previous efforts on bio-inspired hardware developed for granular terrains and accessing complex geological features. Later, a rigid wheel design has been proposed to imitate SLs locomotion capabilities. In order to derive the force models to predict performance of such bio-inspired mobility system, different approaches as RFT (Resistive Force Theory) and analytical terramechanics are introduced. Even in typical wheeled robots the slip and sinkage increase with time, the new design intends to imitate traversability capabilities of SLs, that seem to keep the same slip while displacing at subsurface levels.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): A. J. R. Lopez-Arreguin, S. Montenegro
URN:urn:nbn:de:bvb:20-opus-230309
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Mathematik und Informatik / Institut für Informatik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Heliyon
Erscheinungsjahr:2020
Band / Jahrgang:6
Aufsatznummer:e04148
Originalveröffentlichung / Quelle:Heliyon 6 (2020) e04148. https://doi.org/10.1016/j.heliyon.2020.e04148
DOI:https://doi.org/10.1016/j.heliyon.2020.e04148
Allgemeine fachliche Zuordnung (DDC-Klassifikation):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
Freie Schlagwort(e):aerospace engineering; biomechanic; biomechanical engineering; biomimetics; granular; locomotion; mechanical engineering; mechanics; sandfish; slip
Datum der Freischaltung:20.04.2021
Sammlungen:Open-Access-Publikationsfonds / Förderzeitraum 2020
Lizenz (Deutsch):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International