Transport properties of helical Luttinger liquids

Transporteigenschaften von helikalen Luttinger Flüssigkeiten

Please always quote using this URN: urn:nbn:de:bvb:20-opus-153450
  • The prediction and the experimental discovery of topological insulators has set the stage for a novel type of electronic devices. In contrast to conventional metals or semiconductors, this new class of materials exhibits peculiar transport properties at the sample surface, as conduction channels emerge at the topological boundaries of the system. In specific materials with strong spin-orbit coupling, a particular form of a two-dimensional topological insulator, the quantum spin Hall state, can be observed. Here, the respective one-dimensionalThe prediction and the experimental discovery of topological insulators has set the stage for a novel type of electronic devices. In contrast to conventional metals or semiconductors, this new class of materials exhibits peculiar transport properties at the sample surface, as conduction channels emerge at the topological boundaries of the system. In specific materials with strong spin-orbit coupling, a particular form of a two-dimensional topological insulator, the quantum spin Hall state, can be observed. Here, the respective one-dimensional edge channels are helical in nature, meaning that there is a locking of the spin orientation of an electron and its direction of motion. Due to the symmetry of time-reversal, elastic backscattering off interspersed impurities is suppressed in such a helical system, and transport is approximately ballistic. This allows in principle for the realization of novel energy-efficient devices, ``spintronic`` applications, or the formation of exotic bound states with non-Abelian statistics, which could be used for quantum computing. The present work is concerned with the general transport properties of one-dimensional helical states. Beyond the topological protection mentioned above, inelastic backscattering can arise from various microscopic sources, of which the most prominent ones will be discussed in this Thesis. As it is characteristic for one-dimensional systems, the role of electron-electron interactions can be of major importance in this context. First, we review well-established techniques of many-body physics in one dimension such as perturbative renormalization group analysis, (Abelian) bosonization, and Luttinger liquid theory. The latter allow us to treat electron interactions in an exact way. Those methods then are employed to derive the corrections to the conductance in a helical transport channel, that arise from various types of perturbations. Particularly, we focus on the interplay of Rashba spin-orbit coupling and electron interactions as a source of inelastic single-particle and two-particle backscattering. It is demonstrated, that microscopic details of the system, such as the existence of a momentum cutoff, that restricts the energy spectrum, or the presence of non-interacting leads attached to the system, can fundamentally alter the transport signature. By comparison of the predicted corrections to the conductance to a transport experiment, one can gain insight about the microscopic processes and the structure of a quantum spin Hall sample. Another important mechanism we analyze is backscattering induced by magnetic moments. Those findings provide an alternative interpretation of recent transport measurements in InAs/GaSb quantum wells.show moreshow less
  • Mit der Vorhersage und der experimentellen Entdeckung von topologischen Isolatoren wurde die Grundlage für eine vollkommen neue Art von elektronischen Bauelementen geschaffen. Diese neue Klasse von Materialien zeichnet sich gegenüber herkömmlichen Metallen und Halbleitern durch besondere Transporteigenschaften der Probenoberfläche aus, wobei elektrische Leitung in Randkanälen an den topologischen Grenzflächen des Systems stattfindet. Eine spezielle Form des zweidimensionalen topologischen Isolators stellt der Quanten-Spin-Hall-ZustandMit der Vorhersage und der experimentellen Entdeckung von topologischen Isolatoren wurde die Grundlage für eine vollkommen neue Art von elektronischen Bauelementen geschaffen. Diese neue Klasse von Materialien zeichnet sich gegenüber herkömmlichen Metallen und Halbleitern durch besondere Transporteigenschaften der Probenoberfläche aus, wobei elektrische Leitung in Randkanälen an den topologischen Grenzflächen des Systems stattfindet. Eine spezielle Form des zweidimensionalen topologischen Isolators stellt der Quanten-Spin-Hall-Zustand dar, welcher in bestimmten Materialien mit starker Spin-Bahn-Kopplung beobachtet werden kann. Die hier auftretenden eindimensionalen Leitungskanäle sind von helikaler Natur, was bedeutet, dass die Orientierung des Spins eines Elektrons und seine Bewegungsrichtung fest miteinander gekoppelt sind. Aufgrund von Symmetrien wie Zeitumkehr ist elastische Rückstreuung an eventuell vorhandenen Störstellen in solchen helikalen Kanälen verboten, sodass elektrische Leitung als nahezu ballistisch betrachtet werden kann. Prinzipiell bieten sich dadurch neue Möglichkeiten zur Konstruktion von energieeffizienten Transistoren, “Spintronik“-Bauelementen, oder zur Erzeugung von speziellen Zuständen, die für den Betrieb eines Quantencomputers benutzt werden könnten. Die vorliegende Arbeit beschäftigt sich mit den allgemeinen Transporteigenschaften von eindimensionalen, helikalen Randzuständen. Neben dem oben erwähnten topologischen Schutz gibt es zahlreiche Störquellen, die inelastische Rückstreuprozesse induzieren. Die wichtigsten davon werden im Rahmen dieser Dissertation beleuchtet. Entscheidend wirkt hierbei oft die Rolle von Elektron-Elektron-Wechselwirkungen, welche in eindimensionalen Systemen generell von großer Bedeutung ist. Zunächst werden bewährte Techniken der Festkörperphysik wie etwa Abelsche Bosonisierung (mithilfe derer Wechselwirkungen in einer Raumdimension exakt berücksichtigt werden können), die Theorie von Luttinger Flüssigkeiten, oder die störungstheoretische Renormierungsgruppenanalyse rekapituliert. Diese Methoden werden im Weiteren benutzt, um die Korrekturen zum Leitwert eines helikalen Transportkanals zu berechnen, welche aufgrund von ausgewählten Störungen auftreten können. Ein Fokus liegt hierbei auf dem Zusammenspiel vonWechselwirkungen und Rashba Spin-Bahn-Kopplung als Quelle inelastischer Ein-Teilchen- oder Zwei-Teilchen-Rückstreuung. Mikroskopische Details wie etwa die Existenz einer Impulsobergrenze, welche das Energiespektrum beschränkt, oder die Anwesenheit von wechselwirkungsfreien Spannungskontakten, sind dabei von grundsätzlicher Bedeutung. Die charakteristische Form der vorhergesagten Korrekturen kann dazu dienen, die Struktur und die mikroskopischen Vorgänge im Inneren einer Quanten-Spin- Hall-Probe besser zu verstehen. Ein weiterer grundlegender Mechanismus ist Rückstreuung verursacht durch magnetische Momente. Aus der entsprechenden Analyse der Korrekturen zur Leitfähigkeit ergeben sich interessante Übereinstimmungen mit aktuellen Experimenten in InAs/GaSb Quantentrögen.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Florian Geißler
URN:urn:nbn:de:bvb:20-opus-153450
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Referee:Prof. Dr. Björn Trauzettel
Date of final exam:2017/09/08
Language:English
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Topologischer Isolator; Luttinger-Flüssigkeit; Transporteigenschaft
Tag:Dimension 1; Elektronischer Transport
1D transport; Backscattering; Correlated electron effects
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
Release Date:2017/09/19
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International