• Treffer 6 von 784
Zurück zur Trefferliste

Iterative training of robust k‐space interpolation networks for improved image reconstruction with limited scan specific training samples

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-312306
  • To evaluate an iterative learning approach for enhanced performance of robust artificial‐neural‐networks for k‐space interpolation (RAKI), when only a limited amount of training data (auto‐calibration signals [ACS]) are available for accelerated standard 2D imaging. Methods In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallelTo evaluate an iterative learning approach for enhanced performance of robust artificial‐neural‐networks for k‐space interpolation (RAKI), when only a limited amount of training data (auto‐calibration signals [ACS]) are available for accelerated standard 2D imaging. Methods In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in vivo datasets from the fastMRI neuro database with different contrast settings. Results For limited training data (18 and 22 ACS lines for R = 4 and R = 5, respectively), iRAKI outperforms standard RAKI by reducing residual artifacts and yields better noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. Additionally, iRAKI shows better performance than both GRAPPA and standard RAKI in case of pre‐scan calibration with varying contrast between training‐ and undersampled data. Conclusion RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Peter Dawood, Felix Breuer, Jannik Stebani, Paul Burd, István Homolya, Johannes Oberberger, Peter M. Jakob, Martin Blaimer
URN:urn:nbn:de:bvb:20-opus-312306
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Medizinische Fakultät / Medizinische Klinik und Poliklinik I
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Magnetic Resonance in Medicine
Erscheinungsjahr:2023
Band / Jahrgang:89
Heft / Ausgabe:2
Erste Seite:812
Letzte Seite:827
Originalveröffentlichung / Quelle:Magnetic Resonance in Medicine 2023, 89(2):812-827. DOI: 10.1002/mrm.29482
DOI:https://doi.org/10.1002/mrm.29482
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):GRAPPA; RAKI; complex‐valued machine learning; data augmentation; deep learning; parallel imaging
Datum der Freischaltung:27.06.2023
Lizenz (Deutsch):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International