• search hit 7 of 8
Back to Result List

Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements

Spektroskopische Untersuchung des dynamischen Zusammenspiels an hybriden Molekül-Substrat Grenzflächen: Ultraschnelle Elektronen- und Atombewegungen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-330531
  • This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules,This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces – pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) – are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample’s valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample’s bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-Ångström spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-Ångström precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 % of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 % of CuPc molecules.show moreshow less
  • Das Ziel der vorliegenden Doktorarbeit ist es, die Bewegung von Atomen, Ladungsträgern und Energie an organisch/anorganischen Grenzschichten fernab des thermischen Gleichgewichts zu visualisieren und deren Wechselwirkung zu entschlüsseln. Dies wird experimentell mittels zeitaufgelöster Photoemissionsexperimente an einer Freien-Elektronen-LaserQuelle und an einer Höher-Harmonischen-Quelle verwirklicht. Ladungs- und Energietransfer zwischen organisch/anorganischen Grenzschichten sind zentrale Komponenten für die Funktion Molekül-basierterDas Ziel der vorliegenden Doktorarbeit ist es, die Bewegung von Atomen, Ladungsträgern und Energie an organisch/anorganischen Grenzschichten fernab des thermischen Gleichgewichts zu visualisieren und deren Wechselwirkung zu entschlüsseln. Dies wird experimentell mittels zeitaufgelöster Photoemissionsexperimente an einer Freien-Elektronen-LaserQuelle und an einer Höher-Harmonischen-Quelle verwirklicht. Ladungs- und Energietransfer zwischen organisch/anorganischen Grenzschichten sind zentrale Komponenten für die Funktion Molekül-basierter Anwendungen, wie z.B. katalytische Oberflächen, elektronische Schalt- und Speichergeräte oder molekulare Maschinen. Sie stellen einen dynamischen Prozess dar, der sich in einem Wechselspiel aus der Bewegung von Elektronen zwischen beiden Schichten und atomaren Bewegungen innerhalb beider Schichten äußert. Planare Moleküle, wie Pentacen oder Kupfer(II)-Phthalocyanin (CuPc), eignen sich besonders um solche atomaren Bewegungen zu untersuchen, da diese aufgrund geringer Rückstellkräfte senkrecht zur Molekülebene besonders ausgeprägt sein können. In dieser Arbeit werden Ladungs- und Energietransferprozesse an zwei ausgewählten Grenzschichten untersucht: Pentacen auf Silber (Ag(110)) und CuPc auf Titan Diselenid (1T-TiSe2). Zeitaufgelöste Photoemissionsexperimente (tr-PES) wurden an einer HöherHarmonischen-Quelle und an dem Freien-Elektronen-Laser FLASH (Deutsches Elektronen-Synchrotron DESY, Hamburg, Deutschland) durchgeführt. Beide Lichtquellen liefern Photonenpulse mit einer Halbwertsbreite von etwa 100 fs und sind daher geeignet, um Nicht-Gleichgewichtsprozesse zeitlich aufzulösen, die auf der Bewegung von sowohl Elektronen als auch Atomen basieren. Die gewählte Höher-Harmonische-Quelle liefert Photonenenergien im UV-Bereich. Bei FLASH hingegen können die Photonenenergien variabel vom UV-Bereich bis hin zum Weichröntgenbereich erzeugt werden. Dieser erweiterte Energiebereich ermöglicht es, zusätzlich zur elektronischen Dynamik im Valenzbereich, auch Dynamiken kernnaher Zustände zu beobachten. Mithilfe dreier Modalitäten von zeitaufgelöster Photoemission – zeit- und winkelaufgelöste Photoelektronenspektroskopie (tr-ARPES), zeitaufgelöste Röntgenphotoelektronenspektroskopie (tr-XPS) und zeitaufgelöste Röntgenphotoelektronen-Diffraktion (tr-XPD) – werden sowohl die elektronischen als auch strukturellen Dynamiken der Grenzschicht rekonstruiert. Dabei dient tr-ARPES im UV-Bereich zur Charakterisierung der makroskopischen elektronischen Eigenschaften und tr-XPS und tr-XPD im Weichröntgenbereich dienen zur Analyse lokaler chemischer und struktureller Eigenschaften. Alle Messungen wurden unter denselben experimentellen Beidingungen durchgeführt und mithilfe eines Flugzeit-Impulsmikroskops konnte die transiente Bandstruktur mit einer Ortauflösung im Sub-Ångström-Bereich und einer Zeitauflö- sung im Femtosekunden-Bereich aufgenommen werden. In beiden untersuchten Systemen werden elektronische und strukturelle Prozesse an der Molekül–Substrat Grenzfläche beobachtet, die durch einen Ladungs- und Energietransfer in Folge optischer Anregung erklärt werden. Dieser Transfer äußert sich elektronisch durch ein Befüllen des Substrat-Leitungsbands und einem zeitgleichen Entleeren der MolekülValenzorbitale. Strukturelle Veränderungen, wie die Adsorptionshöhe oder intramolekulare Atompositionen, werden aus den sich zeitgleich verformenden Molekül-Valenzorbitalen rekonstruiert. Speziell für CuPc/TiSe2 wird ein effektiver Ladungstransfer beobachtet, wodurch 375 fs nach optischer Anregung ∼ 45 % der Moleküle einfach positiv geladen vorliegen. Diese Ladungstrennung zwischen den sich wie ein Schachbrett anordnenden positivgeladenen und neutralen Molekülen sowie dem Substrat führt zu einer Modulation des Oberflächenpotentials, welche eine energetische Verschiebung aller Grenzflächenzustände bedingt und intramolekulare Strukturveränderungen sowie eine makroskopische Reorganisation des Molekülfilms zur Folge hat: ∼ 60 % der Moleküle drehen sich innerhalb von ∼ 375 fs synchron auf dem Substrat und nehmen nach ∼ 1800 fs wieder ihre Ausgangsposition ein. Diese überraschende Beobachtung sowie die Ursache werden detaillierter in der vorliegenden Arbeit diskutiert und in den Kontext aktueller Forschung an "molekularen Schaltern" gebracht.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Kiana Jasmin BaumgärtnerGND
URN:urn:nbn:de:bvb:20-opus-330531
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Friedrich Reinert, Prof. Dr. Jens Pflaum, Prof. Dr. Giorgio Sangiovanni
Date of final exam:2023/09/22
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-33053
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:ARPES; Pump-Probe-Technik; Übergangsmetalldichalkogenide; Orbital; Molekül
Tag:charge transfer; free electron laser; molecular movie; orbital tomography; time-resolved
PACS-Classification:30.00.00 ATOMIC AND MOLECULAR PHYSICS
Release Date:2023/11/14
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International