• Treffer 1 von 2
Zurück zur Trefferliste

Proximal methods in medical image reconstruction and in nonsmooth optimal control of partial differential equations

Proximale Methoden in der medizinischen Bildrekonstruktion und in der nicht-glatten optimalen Steuerung von partiellen Differenzialgleichungen

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-136569
  • Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximalProximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented. In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates.zeige mehrzeige weniger
  • Proximale Methoden sind iterative Optimierungsverfahren für Funktionale J = J1 +J2, die aus einem differenzierbaren Teil J2 und einem möglicherweise nichtdifferenzierbaren Teil bestehen. In dieser Arbeit werden proximale Methoden für endlich- und unendlichdimensionale Optimierungsprobleme diskutiert. In endlichen Dimensionen lösen diese `1- und TV-Minimierungsprobleme welche erfolgreich in der Bildrekonstruktion der Magnetresonanztomographie (MRT) angewendet wurden. Die Konvergenz dieser Methoden wurde in diesem Zusammenhang bewiesen. DieProximale Methoden sind iterative Optimierungsverfahren für Funktionale J = J1 +J2, die aus einem differenzierbaren Teil J2 und einem möglicherweise nichtdifferenzierbaren Teil bestehen. In dieser Arbeit werden proximale Methoden für endlich- und unendlichdimensionale Optimierungsprobleme diskutiert. In endlichen Dimensionen lösen diese `1- und TV-Minimierungsprobleme welche erfolgreich in der Bildrekonstruktion der Magnetresonanztomographie (MRT) angewendet wurden. Die Konvergenz dieser Methoden wurde in diesem Zusammenhang bewiesen. Die vorgestellten proximalen Methoden wurden mit einer geteilten proximalen Methode verglichen und konnten ein besseres Signal-Rausch-Verhältnis erzielen. Zusätzlich wurde eine Anwendung präsentiert, die parallele Bildgebung verwendet. Diese Methoden werden auch für unendlichdimensionale Probleme zur Lösung von nichtglatten linearen und bilinearen elliptischen und parabolischen optimalen Steuerungsproblemen diskutiert. Insbesondere wird die schnelle Konvergenz dieser Methoden bewiesen. Außerdem werden abgeschnittene proximale Methoden mit einem inexakten halbglatten Newtonverfahren verglichen. Die numerischen Ergebnisse demonstrieren die Effektivität der proximalen Methoden, welche im Vergleich zu den halbglatten Newtonverfahren in den meisten Fällen weniger Rechenzeit benötigen. Zusätzlich werden die theoretischen Abschätzungen bestätigt.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Autor(en): Andreas Schindele
URN:urn:nbn:de:bvb:20-opus-136569
Dokumentart:Dissertation
Titelverleihende Fakultät:Universität Würzburg, Fakultät für Mathematik und Informatik
Institute der Universität:Fakultät für Mathematik und Informatik / Institut für Mathematik
Gutachter / Betreuer:Prof. Dr. Alfio Borzì, Prof. Dr. Herbert Köstler
Datum der Abschlussprüfung:07.05.2016
Sprache der Veröffentlichung:Englisch
Erscheinungsjahr:2016
Sonstige beteiligte Institutionen:Universitätsklinikum Würzburg
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Normierte Schlagworte (GND):Optimale Kontrolle; Proximal-Punkt-Verfahren; Bildrekonstruktion; Komprimierte Abtastung; Partielle Differentialgleichung
Freie Schlagwort(e):Compressed Sensing; Elliptic equations; Magnetic Resonance Imaging; Medical image reconstruction; Optimal Control; Parabolic equations; Proximal Method; Semismooth Newton Method; Sparsity; Total Variation
Fachklassifikation Mathematik (MSC):49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX]
65-XX NUMERICAL ANALYSIS
Datum der Freischaltung:01.08.2016
Lizenz (Deutsch):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung