Loewner equations in multiply connected domains
Loewner Gleichungen für mehrfach zusammenhängende Gebiete
Please always quote using this URN: urn:nbn:de:bvb:20-opus-129903
- The first goal of this thesis is to generalize Loewner's famous differential equation to multiply connected domains. The resulting differential equations are known as Komatu--Loewner differential equations. We discuss Komatu--Loewner equations for canonical domains (circular slit disks, circular slit annuli and parallel slit half-planes). Additionally, we give a generalisation to several slits and discuss parametrisations that lead to constant coefficients. Moreover, we compare Komatu--Loewner equations with several slits to single slit LoewnerThe first goal of this thesis is to generalize Loewner's famous differential equation to multiply connected domains. The resulting differential equations are known as Komatu--Loewner differential equations. We discuss Komatu--Loewner equations for canonical domains (circular slit disks, circular slit annuli and parallel slit half-planes). Additionally, we give a generalisation to several slits and discuss parametrisations that lead to constant coefficients. Moreover, we compare Komatu--Loewner equations with several slits to single slit Loewner equations. Finally we generalise Komatu--Loewner equations to hulls satisfying a local growth property.…
- Zunächst diskutieren wir eine Verallgemeinerung der radialen und chordalen Loewner Differentialgleichung auf mehrfach zusammenhängende Standardgebiete (Kreisschlitzgebiete, Kreisringschlitzgebiete, parallel Schlitz-Halbebenen). Diese Differentialgleichungen werden Komatu-Loewner Differentialgleichungen bezeichnet. Wir verallgemeinern diese auch auf mehrere Schlitze und zeigen, dass es Parametrisierungen gibt, die zu konstanten Koeffizienten führen. Zusätzlich vergleichen wir Komatu-Loewner Gleichungen für mehrere Schlitze mit LoewnerZunächst diskutieren wir eine Verallgemeinerung der radialen und chordalen Loewner Differentialgleichung auf mehrfach zusammenhängende Standardgebiete (Kreisschlitzgebiete, Kreisringschlitzgebiete, parallel Schlitz-Halbebenen). Diese Differentialgleichungen werden Komatu-Loewner Differentialgleichungen bezeichnet. Wir verallgemeinern diese auch auf mehrere Schlitze und zeigen, dass es Parametrisierungen gibt, die zu konstanten Koeffizienten führen. Zusätzlich vergleichen wir Komatu-Loewner Gleichungen für mehrere Schlitze mit Loewner Gleichungen im Einschlitzfall. Schließlich untersuchen wir den Fall von allgemeineren Wachstumsprozessen, die dadurch charakterisiert sind, dass nur ein "lokaler Zuwachs" möglich ist.…
Author: | Christoph Böhm |
---|---|
URN: | urn:nbn:de:bvb:20-opus-129903 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Mathematik und Informatik |
Faculties: | Fakultät für Mathematik und Informatik / Institut für Mathematik |
Referee: | Prof. Dr. Oliver Roth |
Date of final exam: | 2016/02/26 |
Language: | English |
Year of Completion: | 2015 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
GND Keyword: | Biholomorphe Abbildung; Differentialgleichung |
Tag: | Loewner-Theorie Loewner theory |
Release Date: | 2016/03/15 |
Licence (German): | Deutsches Urheberrecht mit Print on Demand |