• Treffer 2 von 3
Zurück zur Trefferliste

Direct observation of exciton–exciton interactions

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-226271
  • Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor excitonNatural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Jakub Dostál, Franziska Fennel, Federico Koch, Stefanie Herbst, Frank Würthner, Tobias Brixner
URN:urn:nbn:de:bvb:20-opus-226271
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Chemie und Pharmazie / Institut für Organische Chemie
Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Nature Communications
Erscheinungsjahr:2018
Band / Jahrgang:9
Aufsatznummer:2466
Originalveröffentlichung / Quelle:Nature Communications (2018) 9:2466. https://doi.org/10.1038/s41467-018-04884-4
DOI:https://doi.org/10.1038/s41467-018-04884-4
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Freie Schlagwort(e):energy transfer; optical spectroscopy; self-assembly
Datum der Freischaltung:14.06.2024
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International